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Welcome back everyone! This is the second quarter in a three-quarter experimental
sequence on algebraic geometry.

We know what schemes are, their properties, quasicoherent sheaves on them, and mor-
phisms between them. This quarter, we’re going to talk about fancier concepts: fibered
products; normalization; separatedness and the definition of a variety; rational maps;
classification of curves; cohomology; differentials; and Riemann-Roch.

I’d like to start with some notions that I now think I should have done in the middle of
last quarter. They are some notions that I think are easier than are usually presented.

1. INTEGRAL EXTENSIONS, THE GOING-UP THEOREM, NOETHER NORMALIZATION, AND
A PROOF OF THE BIG DIMENSION THEOREM (THAT TRANSCENDENCE DEGREE =

KRULL DIMENSION)

Recall the maps of sets corresponding to a map of rings. If we have φ : B → A, we get
a map Spec A → Spec B as sets (and indeed as topological spaces, and schemes), which
sends p ⊂ A to φ−1p ⊂ B. The notion behaves well under quotients and localization of
both the source and target affine scheme.

A ring homomorphism φ : B → A is integral if every element of A is integral over φ(B).
(Thanks to Justin for pointing out that this notation is not just my invention — it is in
Atiyah-Macdonald, p. 60.) In other words, if a is any element of A, then a satisfies some
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monic polynomial an + · · · = 0 where all the coefficients lie in φ(B). We call it an integral
extension if φ is an inclusion of rings.

1.1. Exercise. The notion of integral morphism is well behaved with respect to localiza-
tion and quotient of B, and quotient of A (but not localization of A, witness k[t] → k[t],
but k[t] → k[t](t)). The notion of integral extension is well behaved with respect to local-
ization and quotient of B, but not quotient of A (same example, k[t] → k[t]/(t)).

1.2. Exercise. Show that if B is an integral extension of A, and C is an integral extension
of B, then C is an integral extension of A.

1.3. Proposition. — If A is finitely generated as a B-module, then φ is an integral morphism.

Proof. (If B is Noetherian, this is easiest: suppose a ∈ B. Then A is a Noetherian B-
module, and hence the ascending chain of B-submodules of A (1) ⊂ (1, a) ⊂ (1, a, a2) ⊂

(1, a, a2, a3) ⊂ · · · eventually stabilizes, say (1, a, . . . , an−1) = (1, a, . . . , an−1, an). Hence
an is a B-linear combination of 1, . . . , an−1, i.e. is integral over B. So Noetherian-minded
readers can stop reading.) We use a trick we’ve seen before. Choose a finite generating
set m1, . . . , mn of A as a B-module. Then ami =

∑
aijmj, where aij ∈ B. Thus

(aIn×n − [aij]ij)





m1

...
mn



 =





0
...
0



 .

Multiplying this equation by the adjoint of the left side, we get

det(aIn×n − [aij]ij)





m1

...
mn



 =





0
...
0



 .

(We saw this trick when discussing Nakayama’s lemma.) So det(aI − M) annihilates A,
i.e. det(aI − M) = 0. �

1.4. Exercise (cf. Exercise 1.2). Show that if B is a finite extension of A, and C is a
finite extension of B, then C is an finite extension of A. (Recall that if we have a ring
homomorphism A → B such that B is a finitely-generated A-module (not necessarily A-
algebra) then we say that B is a finite extension of A.)

We now recall the Going-up theorem.

1.5. Cohen-Seidenberg Going up theorem. — Suppose φ : B → A is an integral extension. Then
for any prime ideal q ⊂ B, there is a prime ideal p ⊂ A such that p ∩ B = q.

Although this is a theorem in algebra, the name reflects its geometric motivation: the
theorem asserts that the corresponding morphism of schemes is surjective, and that “above”
every prime q “downstairs”, there is a prime q “upstairs”. (I drew a picture here.) For this
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reason, it is often said that q is “above” p if p∩B = q. (Joe points out that my speculation
on the origin of the name “going up” is wrong.)

As a reality check: note that the morphism k[t] → k[t](t) is not integral, so the conclusion
of the Going-up theorem 1.5 fails. (I drew a picture again.)

Proof of the Cohen-Seidenberg Going-Up theorem 1.5. This proof is eminently readable, but
could be skipped on first reading. We start with an exercise.

1.6. Exercise. Show that the special case where A is a field translates to: if B ⊂ A is a
subring with A integral over B, then B is a field. Prove this. (Hint: all you need to do is
show that all nonzero elements in B have inverses in B. Here is the start: If b ∈ B, then
1/b ∈ A, and this satisfies some integral equation over B.)

We’re ready to prove the Going-Up Theorem 1.5.

We first make a reduction: by localizing at q, so we can assume that (B, q) is a local ring.

Then let p be any maximal ideal of A. We will see that p∩B = q. Consider the following
diagram.

A // // A/p field

B
?�

OO

// // B/(B ∩ p)
?�

OO

By the Exercise above, the lower right is a field too, so B ∩ p is a maximal ideal, hence
q. �

1.7. Important but straightforward exercise (sometimes also called the going-up theo-
rem). Show that if q1 ⊂ q2 ⊂ · · · ⊂ qn is a chain of prime ideals of B, and p1 ⊂ · · · ⊂ pm is
a chain of prime ideals of A such that pi “lies over” qi (and m < n), then the second chain
can be extended to p1 ⊂ · · · ⊂ pn so that this remains true.

The going-up theorem has an important consequence.

1.8. Important exercise. Show that if f : Spec A → Spec B corresponds to an integral
extension of rings, then dim Spec A = dim Spec B.

I’d like to walk you through much of this exercise. You can show that a chain down-
stairs gives a chain upstairs, by the going up theorem, of the same length. Conversely,
a chain upstairs gives a chain downstairs. We need to check that no two elements of the
chain upstairs goes to the same element of the chain downstairs. That boils down to this:
If φ : k → A is an integral extension, then dim A = 0. Proof. Suppose p ⊂ m are two prime
ideals of p. Mod out by p, so we can assume that A is a domain. I claim that any non-zero
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element is invertible. Here’s why. Say x ∈ A, and x 6= 0. Then the minimal monic poly-
nomial for x has non-zero constant term. But then x is invertible (recall coefficients are in
a field).

We now introduce another important and ancient result, Noether’s Normalization Lemma.

1.9. Noether Normalization Lemma. — Suppose A is an integral domain, finitely generated over
a field k. If tr.deg.kA = n, then there are elements x1, . . . , xn ∈ A, algebraically independent
over k, such that A is a finite (hence integral by Proposition 1.3) extension of k[x1, . . . , xn].

The geometric content behind this result is that given any integral affine k-scheme X,
we can find a surjective finite morphism X → A

n
k , where n is the transcendence degree of

the function field of X (over k).

Proof of Noether normalization. We give Nagata’s proof, following Mumford’s Red Book
(§1.1). Suppose we can write A = k[y1, . . . , ym]/p, i.e. that A can be chosen to have m

generators. Note that m ≥ n. We show the result by induction on m. The base case
m = n is immediate.

Assume now that m > n, and that we have proved the result for smaller m. We will
find m − 1 elements z1, . . . , zm−1 of A such that A is finite over A ′ := k[z1, . . . , zm−1]
(by which we mean the subring of A generated by z1, . . . , zm−1). Then by the inductive
hypothesis, A ′ is finite over some k[x1, . . . , xn], and A is finite over A, so by Exercise 1.4
A is finite over k[x1, . . . , xn].

As y1, . . . , ym are algebraically dependent, there is some non-zero algebraic relation
f(y1, . . . , ym) = 0 among them (where f is a polynomial in m variables).

Let z1 = y1 −yr1
m, z2 = y2 −yr2

m , . . . , zm−1 = ym−1 −y
rm−1
m , where r1, . . . , rm−1 are positive

integers to be chosen shortly. Then

f(z1 + yr1
m, z2 + yr2

m, . . . , zm−1 + yrm−1
m , ym) = 0.

Then upon expanding this out, each monomial in f (as a polynomial in m variables) will
yield a single term in that is a constant times a power of ym (with no zi factors). By
choosing the ri so that 0 � r1 � r2 � · · · � rm−1, we can ensure that the powers of
ym appearing are all distinct, and so that in particular there is a leading term yN

m, and all
other terms (including those with zi-factors) are of smaller degree in ym. Thus we have
described an integral dependence of ym on z1, . . . , zm−1 as desired. �

Now we can give a proof of something we used a lot last quarter:

1.10. Important Theorem about Dimension. — Suppose R is a finitely-generated domain over a
field k. Then dim Spec R is the transcendence degree of the fraction field Frac(R) over k.

We proved this in class 9, but I think this proof is much slicker.
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Proof. Suppose X is an integral affine k-scheme. We show that dim X equals the transcen-
dence degree n of its function field, by induction on n. Fix X, and assume the result is
known for all transcendence degrees less than n. The base case n = −1 is vacuous.

By Exercise 1.8, dim X = dim An
k . If n = 0, we are done.

We now show that dim An
k = n for n > 0. Clearly dim An

k ≥ n, as we can describe a
chain of irreducible subsets of length n + 1: if x1, . . . , xn are coordinates on An, consider
the chain of ideals

(0) ⊂ (x1) ⊂ · · · ⊂ (x1, . . . , xn)

in k[x1, . . . , xn]. Suppose we have a chain of prime ideals of length at least n:

(0) = p0 ⊂ · · · ⊂ pm.

where p1 is a height 1 prime ideal. Then p1 is principal (as k[x1, . . . , xn] is a unique factor-
ization domain, cf. Exercises 1 and 4 on problem set 6); say p1 = (f(x1, . . . , xn)), where f

is an irreducible polynomial. Then k[x1, . . . , xn]/(f(x1, . . . , xn)) has transcendence degree
n − 1, so by induction,

dim k[x1, . . . , xn]/(f) = n − 1.

�

2. IMAGES OF MORPHISMS

Here are two applications of the going-up theorem, which are quite similar to each
other.

2.1. Exercise. Show that finite morphisms are closed, i.e. the image of any closed subset is
closed.

2.2. Exercise. Show that integral ring extensions induce a surjective map of spectra.

I now want to use the Noether normalization lemma to prove Chevalley’s theorem. Re-
call that we define a constructable subset of a scheme to be a subset which belongs to the
smallest family of subsets such that (i) every open set is in the family, (ii) a finite intersec-
tion of family members is in the family, and (iii) the complement of a family member is
also in the family. So for example the image of (x, y) 7→ (x, xy) is constructable.

2.3. Exercise. Suppose X is a Noetherian scheme. Show that a subset of X is constructable
if and only if it is the finite disjoint union of locally closed subsets.

Last quarter we stated the following.

2.4. Chevalley’s Theorem. — Suppose f : X → Y is a morphism of finite type of Noetherian
schemes. Then the image of any constructable set is constructable.
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We’ll now prove this using Noether normalization. (This is remarkable: Noether nor-
malization is about finitely generated algebras over a field. There is no field in the state-
ment of Chevalley’s theorem. Hence if you prefer to work over arbitrary rings (or schemes),
this shows that you still care about facts about finite type schemes over a field. Also, even
if you are interested in finite type schemes over a given field (like C), the field that comes
up in the proof of Chevalley’s theorem is not that field, so even if you prefer to work
over C, this argument shows that you still care about working over arbitrary fields, not
necessarily algebraically closed.)

We say a morphism f : X → Y is dominant if the image of f meets every dense open
subset of Y. (This is sometimes called dominating, but we will not use this notation.)

2.5. Exercise. Show that a dominant morphism of integral schemes X → Y induces an
inclusion of function fields in the other direction.

2.6. Exercise. If φ : A → B is a ring morphism, show that the corresponding morphism of
affine schemes Spec B → Spec A is dominant iff φ has nilpotent kernel.

2.7. Exercise. Reduce the proof of the Going-up theorem to the following case: suppose
f : X = Spec A → Y = Spec B is a dominant morphism, where A and B are domains, and
f corresponds to φ : B → B[x1, . . . , xn]/I ∼= A. Show that the image of f contains a dense
open subset of Spec B.

Proof. We prove the problem posed in the previous exercise. This argument uses Noether
normalization 1.9 in an interesting context — even if we are interested in schemes over
a field k, this argument will use a larger field, the field K := Frac(B). Now A ⊗B K is a
localization of A with respect to B∗, so it is a domain, and it is finitely generated over K (by
x1, . . . , xn), so it has finite transcendence degree r over K. Thus by Noether normalization,
we can find a subring K[y1, . . . , yr] ⊂ A ⊗B K, so that A ⊗B K is integrally dependent on
K[y1, . . . , yr]. We can choose the yi to be in A: each is in (B∗)−1A to begin with, so we can
replace each yi by a suitable K-multiple.

Sadly A is not necessarily integrally dependent on K[y1, . . . , yr] (as this would imply
that Spec A → Spec B is surjective). However, each xi satisfies some integral equation

xn
i + f1(y1, . . . , yr)x

n−1
i + · · ·+ fn(y1, . . . , yr) = 0

where fj are polynomials with coefficients in K = Frac(B). Let g be the product of the
denominators of all the coefficients of all these polynomials (a finite set). Then Ag is
integral over Bg, and hence Spec Ag → Spec Bg is surjective; Spec Bg is our open subset.

�
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3. IMPORTANT EXAMPLE: MORPHISMS TO PROJECTIVE (AND QUASIPROJECTIVE)
SCHEMES, AND INVERTIBLE SHEAVES

This will tell us why invertible sheaves are crucially important: they tell us about maps
to projective space, or more generally to quasiprojective schemes. (And given that we
have had a hard time naming any non-quasiprojective schemes, they tell us about maps
to essentially all schemes that are interesting to us.)

3.1. Important theorem. — Maps to P
n correspond to n + 1 sections of a line bundle, not all

vanishing at any point (= generated by global sections, by an earlier exercise, Class 16 Exercise
4.2, = Problem Set 7, Exercise 28), modulo sections of O∗

X.

The explanation and proof of the correspondence is in the notes for next day.

Here are some examples.

Example 1. Consider the n + 1 functions x0, . . . , xn on An+1 (otherwise known as n +
1 sections of the trivial bundle). They have no common zeros on An − 0. Hence they
determine a morphism An+1 − 0 → Pn. (We’ve talked about this morphism before. But
now we don’t have to worry about gluing.)

Example 2: the Veronese morphism. Consider the line bundle OPn(m) on Pn. We’ve
checked that the number of sections of this line bundle are

(

n+m

m

)

, and they correspond
to homogeneous degree m polynomials in the projective coordinates for Pn. Also, they
have no common zeros (as for example the subset of sections xm

0 , xm
1 , . . . , xm

n have no com-
mon zeros). Thus these determine a morphism P

n → P(n+m
m )−1. This is called the Veronese

morphism. For example, if n = 2 and m = 2, we get a map P2 → P5.

This is in fact a closed immersion. Reason: This map corresponds to a surjective map
of graded rings. The first ring R1 has one generator for each of degree m monomial in
the xi. The second ring is not k[x0, . . . , xn], as R1 does not surject onto it. Instead, we take
R2 = k[x0, . . . , xn](m), i.e. we consider only those polynomials all of whose terms have
degree divisible by m. Then the natural map R1 → R2 is fairly clearly a surjection. Thus
the corresponding map of projective schemes is a closed immersion by an earlier exercise.

How can you tell in general if something is a closed immersion, and not just a map?
Here is one way.

3.2. Exercise. Let f : X → Pn
A be a morphism of A-schemes, corresponding to an invertible

sheaf L on X and sections s0, . . . , sn ∈ Γ(X,L) as above. Then φ is a closed immersion iff
(1) each open set Xi = Xsi

is affine, and (2) for each i, the map of rings A[y0, . . . , yn] →
Γ(Xi,OXi

) given by yj 7→ sj/si is surjective.

We’ll give another method of detecting closed immersions later. The intuition for this
will come from differential geometry: the morphism should separate points, and also
separate tangent vectors.
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Example 3. The rational normal curve. The image of the Veronese morphism when
n = 1 is called a rational normal curve of degree m. Our map is P

1 → P
m given by [x; y] →

[xm; xm−1y; · · · ; xym−1; ym]. When m = 3, we get our old friend the twisted cubic. When
m = 2, we get a smooth conic. What happens when m = 1?

E-mail address: vakil@math.stanford.edu
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1. IMPORTANT EXAMPLE: MORPHISMS TO PROJECTIVE (AND QUASIPROJECTIVE)
SCHEMES, AND INVERTIBLE SHEAVES

1.1. Important theorem. — Maps to Pn correspond to n + 1 sections of an invertible sheaf, not all
vanishing at any point (= generated by global sections), modulo sections of O∗

X.

Here more precisely is the correspondence. If you have n + 1 sections, then away from
the intersection of their zero-sets, we have a morphism. Conversely, if you have a map to
projective space f : X → Pn, then we have n + 1 sections of OPn(1), corresponding to the
hyperplane sections, x0, . . . , xn+1. then f∗x0, . . . , f∗xn+1 are sections of f∗OPn(1), and they
have no common zero.

So to prove this, we just need to show that these two constructions compose to give the
identity in either direction.

Given n + 1 sections s0, . . . , sn of an invertible sheaf. We get trivializations on the open
sets where each one vanishes. The transition functions are precisely si/sj on Ui ∩ Uj. We
pull back O(1) by this map to projective space, This is trivial on the distinguished open
sets. Furthermore, f∗D(xi) = D(si). Moreover, si/sj = f∗xi/xj. Thus starting with the

Date: Thursday, January 12, 2006.
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n + 1 sections, taking the map to the projective space, and pulling back O(1) and taking
the sections x0, . . . , xn, we recover the si’s. That’s one of the two directions.

Correspondingly, given a map f : X → Pn, let si = f∗xi. The map [s0; · · · ; sn] is precisely
the map f. We see this as follows. The preimage of Ui is D(si) = D(f∗xi) = f∗D(xi). So
the right open sets go to the right open sets. And D(si) → D(xi) is precisely by sj/si =
f∗(xj/xi). �

1.2. Exercise (Automorphisms of projective space). Show that all the automorphisms of
projective space Pn

k correspond to (n + 1) × (n + 1) invertible matrices over k, modulo
scalars (also known as PGLn+1(k)). (Hint: Suppose f : Pn

k → Pn
k is an automorphism.

Show that f∗O(1) ∼= O(1). Show that f∗ : Γ(Pn,O(1)) → Γ(Pn,O(1)) is an isomorphism.)

This exercise will be useful later, especially for the case n = 1.

(A question for experts: why did I not state that previous exercise over an arbitrary
base ring A? Where does the argument go wrong in that case?)

1.3. Neat Exercise. Show that any map from projective space to a smaller projective space
is constant.

Here are some useful phrases to know.

A linear series on a scheme X over a field k is an invertible sheaf L and a finite-dimensional
k-vector space V of sections. (We will not require that this vector space be a subspace of
Γ(X,L); in general, we just have a map V → Γ(X,L).) If the linear series is Γ(X,L), we call
it a complete linear series, and is often written |L|. Given a linear series, any point x ∈ X

on which all elements of the linear series V vanish, we say that x is a base-point of V . If
V has no base-points, we say that it is base-point-free. The union of base-points is called
the base locus. In fact, it naturally has a scheme-structure — it is the (scheme-theoretic)
intersection of the vanishing loci of the elements of V (or equivalently, of a basis of V). In
this incarnation, it is called the base scheme of the linear series.

Then Theorem 1.1 says that each base-point-free linear series gives a morphism to
projective space X → PV∗ = Proj⊕nL

⊗n. The resulting morphism is often written

X
|V |

// Pn . (I may not have this notation quite standard; I should check with someone. I
always forget whether I should use “linear system” or “linear series”.)

1.4. Exercise. If the image scheme-theoretically lies in a hyperplane of projective space, we
say that it is degenerate (and otherwise, non-degenerate). Show that a base-point-free linear
series V with invertible sheaf L is non-degenerate if and only if the map V → Γ(X,L) is
an inclusion. Hence in particular a complete linear series is always non-degenerate.

Example: The Veronese and Segre morphisms. Whoops! We don’t know much about
fibered products yet, so the Segre discussion may be a bit confusing. But fibered products are
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coming very very shortly... The Veronese morphism can be interpreted in this way. The dth
Veronese morphism on Pn corresponds to the complete linear series |OPn(d)|.

The Segre morphism can also be interpreted in this way. In case I haven’t defined it yet,
suppose F is a quasicoherent sheaf on a Z-scheme X, and G is a quasicoherent sheaf on a
Z-scheme Y. Let πX, πY be the projections from X×Z Y to X and Y respectively. Then F �G

is defined to be π∗
XF ⊗ π∗

YG. In particular, OPm×Pn(a, b) is defined to be OPm(a) � OPn(b)
(over any base Z). The Segre morphism Pm×Pn → Pmn+m+n corresponds to the complete
linear system for the invertible sheaf O(1, 1).

Both of these complete linear systems are easily seen to be base-point-free (exercise). We
still have to check by hand that they are closed immersions. (We will later see, in class 34,
a criterion for linear series to be a closed immersion, at least in the special case where we
are working over an algebraically closed field.)

2. FIBERED PRODUCTS

We will now construct the fibered product in the category of schemes. In other words,
given X, Y → Z, we will show that X ×Z Y exists. (Recall that the absolute product in a
category is the fibered product over the final object, so X × Y = X ×Z Y in the category of
schemes, and X × Y = X ×S Y if we are implicitly working in the category of S-schemes,
for example if S is the spectrum of a field.)

Here is a notation warning: in the literature (and indeed in this class) lazy people want-
ing to save chalk and ink will write ×k for ×Spec k, and similarly for ×Z. In fact it already
happened in the paragraph above!

As always when showing that certain objects defined by universal properties exist, we
have two ways of looking at the objects in practice: by using the universal property, or by
using the details of the construction.

The key idea, roughly, is this: we cut everything up into affine open sets, do fibered
products in that category (where it turns out we have seen the concept before in a differ-
ent guise), and show that everything glues nicely. We can’t do this too naively (e.g. by
induction), as in general we won’t be able to cut things into a finite number of affine open
sets, so there will be a tiny bit of cleverness.

The argument will be an inspired bit of abstract nonsense, where we’ll have to check
almost nothing. This sort of argument is very powerful, and we will use it immediately
after to construct lots of other interesting notions, so please pay attention!

Before we get started, here is a sign that something interesting happens for fibered
products of schemes. Certainly you should believe that if we take the product of two
affine lines (over your favorite algebraically field k, say), you should get the affine plane:
A1

k ×k A1
k should be A2

k. But the underlying set of the latter is not the underlying set of the
former —- we get additional points! I’ll give an exercise later for you to verify this.
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Let’s take a break to introduce some language. Say

W //

��

Y

��
X

f // Z

is a fiber diagram or Cartesian diagram or base change diagram. It is often called a pullback
diagram, and W → X is called the pullback of Y → Z by f, and W is called the pullback of Y

by f.

At this point, I drew some pictures on the blackboard giving some intuitive idea of
what a pullback does. If Y → Z is a “family of schemes”, then W → Z is the “pulled
back family”. To make this more explicit or precise, I need to tell you about fibers of a
morphism. I also want to give you a bunch of examples. But before doing either of these
things, I want to tell you how to compute fibered products in practice.

Okay, lets get to work.

2.1. Theorem (fibered products always exist). — Suppose f : X → Z and g : Y → Z are
morphisms of schemes. Then the fibered product

X ×Z Y
f ′

//

g ′

��

Y

g

��
X

f // Z

exists in the category of schemes.

We have an extended proof by universal property.

First, if X, Y, Z are affine schemes, say X = Spec A, Y = Spec B, Z = Spec C, the fibered
product exists, and is Spec A ⊗C B. Here’s why. Suppose W is any scheme, along with
morphisms f ′′ : W → X and g ′′ : W → Y such that f◦f ′′ = g◦g ′′ as morphisms W → Z. We
hope that there exists a unique h : W → Spec A⊗C B such that f ′′ = g ′ ◦ h and g ′′ = f ′ ◦h.

W
∃!?

&&L

L

L

L

L

L

L

L

L

L

L

g ′′

++V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

f ′′

��:
:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

Spec A ⊗C B

g ′

��

f ′

// Spec B

g

��
Spec A

f // Spec C
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But maps to affine schemes correspond precisely to maps of global sections in the other
direction (class 19 exercise 0.1):

Γ(W,OW)

A ⊗C B

∃!?
ffM
M

M

M

M

M

M

M

M

M

B
f ′

oo

g ′′
jjU
U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

A

g ′

OOf ′′

^^<
<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

C
foo

g

OO

But this is precisely the universal property for tensor product! (The tensor product is
the cofibered product in the category of rings.)

Thus indeed A1 × A1 ∼= A2, and more generally (A1)n ∼= An.

Exercise. Show that the fibered product does not induce a bijection of points

points(A1
k) × points(A1

k)
// points(A2

k).

Thus products of schemes do something a little subtle on the level of sets.

Second, we note that the fibered product with open immersions always exists: if Y ↪→ Z

an open immersion, then for any f : X → Z, X ×Z Y is the open subset f−1(Y). (More
precisely, this open subset satisfies the universal property.) We proved this in class 19
(exercise 1.2).

f−1(Y)
� _

��

// Y� _

��
X

f // Z

(An exercise to give you practice with this concept: show that the fibered product of
two open immersions is their intersection.)

Hence the fibered product of a quasiaffine scheme (defined to be an open subscheme
of an affine scheme) with an affine scheme over an affine scheme exists. This isn’t quite
right; what we’ve shown, and what we’ll use, is that the fibered product of a quasi-affine scheme
with an affine scheme over an affine scheme Z exists so long as that quasi-affine scheme is an open
subscheme of an affine scheme that also admits a map to Z extending the map from the quasiaffine.
At some point I’ll retype this to say this better. This sloppiness continues in later lectures, but the
argument remains correct.

Third, we show that X ×Z Y exists if Y and Z are affine and X is general. Before we
show this, we remark that one special case of it is called “extension of scalars”: if X is a
k-scheme, and k ′ is a field extension (often k ′ is the algebraic closure of k), then X ×Spec k

Spec k ′ (sometimes informally written X ×k k ′ or Xk ′) is a k ′-scheme. Often properties of
X can be checked by verifying them instead on Xk ′ . This is the subject of descent — certain
properties “descend” from Xk ′ to X.
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Let’s verify this. It will follow from abstract nonsense and the gluing lemma. Recall
the gluing lemma (a homework problem): assume we are given a bunch of schemes Xi

indexed by some index set I, along with open subschemes Uij ⊂ Xi indexed by I × I, and
isomorphisms fij : Uij

∼ // Uji , satisfying the cocycle condition: fij(Uij∩Uik) = Uji∩Ujk,
and (fjk ◦ fij)|Uij∩Uik

= fik|Uij∩Uik
. Then they glue together to a unique scheme. (This was

a homework problem long ago; I’ll add a reference when I dig it up.)

We’ll now apply this in our case. Cover X with affine open sets Vi. Let Vij = Vi∩Vj. Then
for each of these, Xi := Vi ×Z Y exists, and each of them has open subsets Uij := Vij ×Z Y,
and isomorphisms satisfying the cocycle condition (because the Vi’s and Vij’s could be
glued together via gij which satisfy the cocycle condition).

Call this glued-together scheme W. It comes with morphisms to X and Y (and their
compositions to Z are the same). I claim that this satisfies the universal property for X×ZY,
basically because “morphisms glue” (yet another ancient exercise). Here’s why. Suppose
W ′ is any scheme, along with maps to X and Y that agree when they are composed to Z.
We need to show that there is a unique morphism W ′ → W completing the diagram

W ′

∃!?

!!C
C

C

C

C

C

C

C

g ′′

((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

f ′′

��1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

W

g ′

��

f ′

// Y

g

��
X

f // Z.

Now break W ′ up into open sets W ′
i = g ′′−1(Ui). Then by the universal property for

Vi = Ui ×Z Y, there is a unique map W ′
i → Vi (which we can interpret as W ′

i → W). (Thus
we have already shown uniqueness of W ′ → W.) These must agree on W ′

i ∩ W ′
j , because

there is only one map W ′
i ∩W ′

j to W making the diagram commute (because of the second
step — (Ui ∩ Uj) ×Z Y exists). Thus all of these morphisms W ′

i → W glue together; we
have shown existence.

Fourth, we show that if Z is affine, and X and Y are arbitrary schemes, then X ×Z Y

exists. We just repeat the process of the previous step, with the roles of X and Y repeated,
using the fact that by the previous step, we can assume that the fibered product with an
affine scheme with an arbitrary scheme over an affine scheme exists.

Fifth, we show that the fibered product of any two schemes over a quasiaffine scheme
exists. Here is why: if Z ↪→ Z ′ is an open immersion into an affine scheme, then X ×Z Y =
X ×Z ′ Y are the same. (You can check this directly. But this is yet again an old exercise —
problem set 1 problem A4 — following from the fact that Z ↪→ Z ′ is a monomorphism.)

Finally, we show that the fibered product of any scheme with any other scheme over
any third scheme always exists. We do this in essentially the same way as the third step,
using the gluing lemma and abstract nonsense. Say f : X → Z, g : Y → Z are two
morphisms of schemes. Cover Z with affine open subsets Zi. Let Xi = f−1Xi and Yi =
g−1Yi. Define Zij = Zi ∩ Zj, and Xij and Yij analogously. Then Wi := Xi ×Zi

Yi exists for
all i, and has as open sets Wij := Xij ×Zij

Yij along with gluing information satisfying the
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cocycle condition (arising from the gluing information for Z from the Zi and Zij). Once
again, we show that this satisfies the universal property. Suppose W ′ is any scheme,
along with maps to X and Y that agree when they are composed to Z. We need to show
that there is a unique morphism W ′ → W completing the diagram

W ′

∃!?

!!C
C

C

C

C

C

C

C

g ′′

((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

f ′′

��1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

W

g ′

��

f ′

// Y

g

��
X

f // Z.

Now break W ′ up into open sets W ′
i = g ′′ ◦ f

−1(Zi). Then by the universal property for
Wi, there is a unique map W ′

i → Wi (which we can interpret as W ′
i → W). Thus we have

already shown uniqueness of W ′ → W. These must agree on W ′
i ∩ W ′

j , because there is
only one map W ′

i ∩ W ′
j to W making the diagram commute. Thus all of these morphisms

W ′
i → W glue together; we have shown existence. �

3. COMPUTING FIBERED PRODUCTS IN PRACTICE

There are four types of morphisms that it is particularly easy to take fibered products
with, and all morphisms can be built from these four atomic components.

(1) base change by open immersions

We’ve already done the work for this one, and we used it above.

f−1(Y)
� _

��

// Y� _

��
X

f // Z

I’ll describe the remaining three on the level of affine sets, because we obtain general
fibered products by gluing.

(2) adding an extra variable

Exercise. Show that B ⊗A A[t] ∼= B[t].

Hence the following is a fibered diagram.

Spec B[t]

��

// Spec A[t]

��
Spec B // Spec A
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(3) base change by closed immersions

If the right column is obtained by modding out by a certain ideal (i.e. if the morphism
is a closed immersion, i.e. if the map of rings in the other direction is surjective), then the
left column is obtained by modding out by the pulled back elements of that ideal. In other
words, if T → R, S are two ring morphisms, and I is an ideal of R, and Ie is the extension
of I to R ⊗T S (the elements

∑
j ij ⊗ sj, where ij ∈ I and sj ∈ S, then there is a natural

isomorphism
R/I ⊗T S ∼= (R ⊗T S)/Ie.

(This is precisely problem B3 on problem set 1.) Thus the natural morphism R ⊗T S →
R/I ⊗T S is a surjection, and we have a base change diagram:

Spec(R ⊗T S)/Ie
� _

��

// Spec R/I
� _

��
Spec R ⊗T S

��

// Spec R

��
Spec S // Spec T

(where each rectangle is a fiber diagram).

Translation: the fibered product with a subscheme is the subscheme of the fibered prod-
uct in the obvious way. We say that “closed immersions are preserved by base change”.

(4) base change by localization

Exercise. Suppose C → B, A are two morphisms of rings. Suppose S is a multiplicative
set of A. Then (S ⊗ 1) is a multiplicative set of A ⊗C B. Show that there is a natural
morphism (S−1A) ⊗C B ∼= (S ⊗ 1)−1(A ⊗C B).

Hence we have a fiber diagram:

Spec(S ⊗ 1)−1(A ⊗C B)

��

// Spec S−1A

��
Spec A ⊗C B

��

// Spec A

��
Spec B // Spec C

(where each rectangle is a fiber diagram).

Translation: the fibered product with a localization is the localization of the fibered
product in the obvious way. We say that “localizations are preserved by base change”.
This is handy if the localization is of the form A ↪→ Af (corresponding to taking distin-
guished open sets) or A ↪→ FF(A) (from A to the fraction field of A, corresponding to
taking generic points), and various things in between.
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These four tricks let you calculate lots of things in practice. For example,
Spec k[x1, . . . , xm]/(f1(x1, . . . , xm), . . . , fr(x1, . . . , xm))⊗k

Spec k[y1, . . . , yn]/(g1(y1, . . . , yn), . . . , gs(y1, . . . , yn))

∼= Spec k[x1, . . . , xm, y1, . . . , yn]/(f1(x1, . . . , xm), . . . , fr(x1, . . . , xm),

g1(y1, . . . , yn), . . . , gs(y1, . . . , yn)).

Here are many more examples.

4. EXAMPLES

One important example is of fibers of morphisms. Suppose p → Z is the inclusion of a
point (not necessarily closed). Then if g : Y → Z is any morphism, the base change with
p → Z is called the fiber of g above p or the preimage of p, and is denoted g−1(p). If Z is
irreducible, the fiber above the generic point is called the generic fiber. In an affine open
subscheme Spec A containing p, p corresponds to some prime ideal p, and the morphism
corresponds to the ring map A → Ap/pAp. this is the composition if localization and
closed immersion, and thus can be computed by the tricks above.

Here is an interesting example, that we will consider multiple times during this course.
Consider the projection of the parabola y2 = x to the x axis, corresponding to the map of
rings Q[x] → Q[y], with x 7→ y2. (If Q alarms you, replace it with your favorite field and
see what happens.)

Then the preimage of 1 is 2 points:
Spec Q[x, y]/(y2 − x) ⊗Q Spec Q[x]/(x − 1) ∼= Spec Q[x, y]/(y2 − x, x − 1)

∼= Spec Q[y]/(y2 − 1)

∼= Spec Q[y]/(y − 1)
∐

Spec Q[y]/(y + 1).

The preimage of 0 is 1 nonreduced point:
Spec Q[x, y]/(y2 − x, x) ∼= Spec Q[y]/(y2).

The preimage of −1 is 1 reduced point, but of “size 2 over the base field”.
Spec Q[x, y]/(y2 − x, x + 1) ∼= Spec Q[y]/(y2 + 1) ∼= Spec Q[i].

The preimage of the generic fiber is again 1 reduced point, but of “size 2 over the residue
field”.

Spec Q[x, y]/(y2 − x) ⊗ Q(x) ∼= Spec Q[y] ⊗ Q(y2)

i.e. you take elements polynomials in y, and you are allowed to invert polynomials in y2.
A little thought shows you that you are then allowed to invert polynomials in y, as if f(y)
is any polynomial in y, then

1

f(y)
=

f(−y)

f(y)f(−y)
,

9



and the latter denominator is a polynomial in y2. Thus

Spec Q[x, y]/(y2 − x) ⊗ Q(x) ∼= Q(y)

which is a degree 2 field extension of Q(x).

For future reference notice the following interesting fact: in each case, the number of
preimages can be interpreted as 2, where you count to two in several ways: you can
count points; you can get non-reduced behavior; or you can have field extensions. This is
going to be symptomatic of a very special and important kind of morphism (a finite flat
morphism).

Here are some other examples.

4.1. Exercise. Prove that An
R

∼= An
Z ×Spec Z Spec R. Prove that Pn

R
∼= Pn

Z ×Spec Z Spec R.

4.2. Exercise. Show that for finite-type schemes over C, the complex-valued points of
the fibered product correspond to the fibered product of the complex-valued points. (You
will just use the fact that C is algebraically closed.)

Here is a definition in common use. The terminology is a bit unfortunate, because it is
a second (different) meaning of “points of a scheme”. If T is a scheme, the T -valued points
of a scheme X are defined to be the morphism T → X. They are sometimes denoted X(T).
If R is a ring (most commonly in this context a field), the R-valued points of a scheme X are
defined to be the morphism Spec R → X. They are sometimes denoted X(R). For example,
if k is an algebraically closed field, then the k-valued points of a finite type scheme are
just the closed points; but in general, things can be weirder. (When we say “points of
a scheme”, and not T -valued points, we will always mean the usual meaning, not this
meaning.)

Exercise. Describe a natural bijection (X ×Z Y)(T) ∼= X(T) ×Z(T) Y(T). (The right side is
a fibered product of sets.) In other words, fibered products behaves well with respect to
T -valued points. This is one of the motivations for this notion.

4.3. Exercise. Describe Spec C ×Spec R Spec C. This small example is the first case of
something incredibly important.

4.4. Exercise. Consider the morphism of schemes X = Spec k[t] → Y = Spec k[u] corre-
sponding to k[u] → k[t], t = u2. Show that X×Y X has 2 irreducible components. Compare
what is happening above the generic point of Y to the previous exercise.

4.5. A little too vague to be an exercise. More generally, suppose K/Q is a finite Galois
field extension. Investigate the analogue of the previous two exercises. Try degree 2. Try
degree 3.
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4.6. Hard but fascinating exercise for those familiar with the Galois group of Q over Q. Show
that the points of Spec Q ⊗Q Q are in natural bijection with Gal(Q/Q), and the Zariski
topology on the former agrees with the profinite topology on the latter.

4.7. Exercise (A weird scheme). Show that Spec Q(t) ⊗Q C is an integral dimension one
scheme, with closed points in natural correspondence with the transcendental complex
numbers. (If the description Spec C[t]⊗Q[t] Q(t) is more striking, you can use that instead.)
This scheme doesn’t come up in nature, but it is certainly neat!

E-mail address: vakil@math.stanford.edu
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Last day: Morphisms to (quasi)projective schemes, and invertible sheaves; fibered
products.

Today: Fibers of morphisms. Properties preserved by base change: open immer-
sions, closed immersions, Segre embedding. Other schemes defined by universal prop-
erty: reduction, normalization.

Last day, I showed you that fibered products exist, and I gave an argument that had
fairly few moving parts: fibered products exist when the schemes in question are affine
schemes; the universal property; and the fact that morphisms glue. I’ll give you an exer-
cise later today to give you a chance to make a similar argument, when I give the universal
property for reducedness.

1. FIBERS OF MORPHISMS

We can informally interpret fibered product in the following geometric way. Suppose
Y → Z is a morphism. We interpret this as a “family of schemes parametrized by a base
scheme (or just plain base) Z.” Then if we have another morphism X → Z, we interpret
the induced map X ×Z Y → X as the “pulled back family”. I drew a picture of this on
the blackboard. I discussed the example: the family y2z = x3 + txz2 of cubics in P2

parametrized by the affine line, and what happens if you pull back to the affine plane via
t = uv, to get the family y2z = x3 + uvxz2.

For this reason, fibered product is often called base change or change of base or pullback.

For instance, if X is a closed point of Z, then we will get the fiber over Z. As an example,
consider the map of schemes f : Y = Spec Q[t] → Z = Spec Q[u] given by u 7→ t2 (or

Date: Tuesday, January 17, 2006. Trivial update October 26, 2006.
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u = t2). (I drew a picture on the blackboard. It looked like a parabola with horizontal
axis of symmetry, projecting to the x-axis.) The fiber above u = 1 corresponds to the base
change X = Spec Q[u]/(u−1) → Spec Q[u]. Let’s do the algebra: X×ZY = Spec Q[t, u]/(u−

1, u−t2) ∼= Spec Q[t]/(t2−1) ∼= Spec Q[t]/(t−1)×Q[t]/(t+1). We see two reduced points
(at “u = 1, t = 1 and u = 1, t = −1”).

Next let’s examine the fiber above u = 0. We get Spec Q[t]/(t2) — a point with non-
reduced structure!

Finally, let’s consider u = −1. We get Spec Q[t]/(t2 + 1). We get a single reduced point.
The residue field Q(i) is a degree 2 field extension over Q.

(Notice that in each case, we get something of “size two”, informally speaking. One
way of making this precise is that the rank of the sheaf f∗OY is rank 2 everywhere. In the
first case, we see it as getting two different points. In the second, we get one point, with
non-reduced behavior. In the last case, we get one point, of “size two”. We will later see
this “constant rank of f∗OY” as symptomatic of the fact that this morphism is “particularly
nice”, i.e. finite and flat.)

We needn’t look at fibers over just closed points; we can consider fibers over any points.
More precisely, if p is a point of Z with residue field K, then we get a map Spec K → Z,
and we can base change with respect to this morphism.

In the case of the generic point of Spec Q[u] in the above example, we have K = Q(u),
and Q[u] → Q(u) is the inclusion of the generic point. Let X = Spec Q(u). Then you
can verify that X ×Z Y = Spec Q[t, u]/(u − t2) ⊗ Q(u) ∼= Spec Q(t). We get the morphism
Q(u) → Q(t) given by u = t2 — a quadratic field extension.

Implicit here is a notion I should make explicit, about how you base change with respect
to localization. Given A → B, and a multiplicative set S of A, we have (S−1A)⊗AB ∼= S−1B,
where S−1B has the obvious interpretation. In other words,

S−1B Boo

S−1A

OO

A

OO

oo

is “cofiber square” (or “pushout diagram”).

1.1. Remark: Geometric points. We have already given two meanings for the “points of a
scheme”. We used one to define the notion of a scheme. Secondly, if T is a scheme, people
sometimes say that Hom(T, X) are the “T -valued points of X”. That’s already confusing.
But also, people say that the geometric points correspond to Hom(T, X) where T is the Spec

of an algebraically closed field. Then for example the geometric fibers are the fibers over
geometric points. In the example above, here is a geometric point: Spec Q[u]/(u − 1) →

Spec Q[u]. And here is a geometric fiber: Spec Q[t]/(t2−1). Notice that the geometric fiber
above u = −1 also consists of two points, unlike the “usual” fiber.
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(I should check: possibly the definition should just be for T the algebraic closure of the
residue field of a not-necessarily-closed point.)

1.2. Exercise for the arithmetically-minded. Show that for the morphism Spec C → Spec R,
all geometric fibers consist of two reduced points. This exercise should be removed if I
have the wrong definition of geometric point!

We will discuss more about geometric points and properties of geometric fibers shortly.

2. PROPERTIES PRESERVED BY BASE CHANGE

We now discuss a number of properties that behave well under base change.

We’ve already shown that the notion of “open immersion” is preserved by base change
(problem 6 on problem set 9, see class 19). We did this by explicitly describing what the
fibered product of an open immersion is: if Y ↪→ Z is an open immersion, and f : X →

Z is any morphism, then we checked that the open subscheme f−1(Y) of X satisfies the
universal property of fibered products.

2.1. Important exercise (problem 8+ on the last problem set). Show that the notion of “closed
immersion” is preserved by base change. (This was stated in class 19.) Somewhat more
precisely, given a fiber diagram

W //

��

X

��
Y // Z

where Y ↪→ Z is a closed immersion, then W ↪→ X is as well. (Hint: in the case of affine
schemes, you have done this before in a different guise — see problem B3 on problem set
1!) In the course of the proof, you will show that W is cut out by the same equations in
X as Y is in Z, or more precisely by pullback of those equations. Hence fibered products
(over k) of schemes of finite type over k may be computed easily:

Spec k[x1, . . . , xm]/(f1(x1, . . . , xm), . . . , fr(x1, . . . , xm))×Spec k

Spec k[y1, . . . , ym]/(g1(y1, . . . , ym), . . . , gs(y1, . . . , ym))

∼= Spec k[x1, . . . , xm, y1, . . . , ym]/(f1(x1, . . . , xm), . . . , fr(x1, . . . , xm),

g1(y1, . . . , ym), . . . , gs(y1, . . . , ym)).

We sometimes say that W is the scheme-theoretic pullback of Y, scheme-theoretic inverse
image, or inverse image scheme of Y. The ideal sheaf of W is sometimes called the inverse
image (quasicoherent) ideal sheaf.
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Note for experts: It is not necessarily the quasicoherent pullback (f∗) of the ideal sheaf,
as the following example shows. (Thanks Joe!)

Spec k[x]/(x) //

��

Spec k[x]/(x)

��
Spec k[x]/(x) // Spec k[x]

Instead, the correct thing to pullback (the thing that “pulls back well”) is the surjection
OZ → OY → 0, which pulls back to OX → OW → 0. The key issue is that pullback of
quasicoherent sheaves is right-exact, so we shouldn’t expect the pullback of 0 → IY/Z →

OZ → OY → 0 to be exact, only right-exact. (Thus for example we get a natural map
f∗IY/Z → IW/X.)

Similarly, other important properties are preserved by base change.

2.2. Exercise. Show that the notion of “morphism locally of finite type” is preserved by
base change. Show that the notion of “affine morphism” is preserved by base change.
Show that the notion of “finite morphism” is preserved by base change.

2.3. Exercise. Show that the notion of “quasicompact morphism” is preserved by base
change.

2.4. Exercise. Show that the notion of “morphism of finite type” is preserved by base
change.

2.5. Exercise. Show that the notion of “quasifinite morphism” (= finite type + finite fibers)
is preserved by base change. (Note: the notion of “finite fibers” is not preserved by base
change. Spec Q → Spec Q has finite fibers, but Spec Q ⊗Q Q → Spec Q has one point for
each element of Gal(Q/Q).)

2.6. Exercise. Show that surjectivity is preserved by base change (or fibered product).
In other words, if X → Y is a surjective morphism, then for any Z → Y, X ×Y Z → Z is
surjective. (You may end up using the fact that for any fields k1 and k2 containing k3,
k1 ⊗k3

k2 is non-zero, and also the axiom of choice.)

2.7. Exercise. Show that the notion of “irreducible” is not necessarily preserved by base
change. Show that the notion of “connected” is not necessarily preserved by base change.
(Hint: C ⊗R C, Q[i] ⊗Q Q[i].)

If X is a scheme over a field k, it is said to be geometrically irreducible if its base change
to k (i.e. X ×Spec k Spec k) is irreducible. Similarly, it is geometrically connected if its base
change to k (i.e. X ×Spec k Spec k) is connected. Similarly also for geometrically reduced and
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geometrically integral. We say that f : X → Y has geometrically irreducible (resp. connected, re-
duced, integral) fibers if the geometric fibers are geometrically irreducible (resp. connected,
reduced, integral).

If you care about such notions, see Hartshorne Exercise II.3.15 for some facts (stated in
a special case). In particular, to check geometric irreducibility, it suffices to check over sep-
arably closed (not necessarily algebraically closed) fields. To check geometric reducedness,
it suffices to check over perfect fields.

2.8. Exercise. Show that Spec C is not a geometrically irreducible R-scheme. If char k = p,
show that Spec k(u) is not a geometrically reduced Spec k(up)-scheme.

2.9. Exercise. Show that the notion of geometrically irreducible (resp. connected, reduced,
integral) fibers behaves well with respect to base change.

On a related note:

2.10. Exercise (less important). Suppose that l/k is a finite field extension. Show that a
k-scheme X is normal if and only if X ×Spec k Spec l is normal. Hence deduce that if k is
any field, then Spec k[w, x, y, z]/(wz − xy) is normal. (I think this was promised earlier.)
Hint: we showed earlier (Problem B4 on set 4) that Spec k[a, b, c, d]/(a2 + b2 + c2 + d2) is
normal.

3. PRODUCTS OF PROJECTIVE SCHEMES: THE SEGRE EMBEDDING

I will next describe products of projective A-schemes over A. The case of greatest initial
interest is if A = k. (A reminder of why we like projective schemes. (i) it is an easy way
of getting interesting non-affine schemes. (ii) we get lots of schemes of classical interest.
(iii) we have a hard time thinking of anything that isn’t projective or an open subset of a
projective. (iv) a k-scheme is a first approximation of what we mean by compact.)

In order to do this, I need only describe Pm
A ×A Pn

A, because any projective scheme has a
closed immersion in some Pm

A , and closed immersions behave well under base change: so
if X ↪→ Pm

A and Y ↪→ Pn
A are closed immersions, then X ×A Y ↪→ Pm

A ×A Pn
A is also a closed

immersion, cut out by the equations of X and Y.

We’ll describe Pm
A ×A Pn

A, and see that it too is a projective A-scheme. Consider the map
Pm

A ×A Pn
A → Pmn+m+n

A given by

([x0; . . . ; xm], [y0; . . . ; yn]) → [z00; z01; · · · ; zij; · · · ; zmn] = [x0y0; x0y1; · · · ; xiyj; · · ·xmyn].

First, you should verify that this is a well-defined morphism! On the open chart Ui × Vj,
this gives a map (x0/i, . . . , xm/i, y0/j, . . . , yn/j) 7→ [x0/iy0/j; . . . ; xi/iyj/j; . . . ; xm/iyn/j]. Note
that this gives an honest map to projective space — not all the entries on the right are
zero, as one of the entries (xi/iyj/j) is 1.

5



(Aside: we now well know that a map to projective space corresponds to an invertible
sheaf with a bunch of sections. The invertible sheaf on this case is π∗

1OPm
A
(1) ⊗ π∗

2OPn
A
(1),

where πi are the projections of the product onto the two factors. The notion � is often
used for this notion, when you pull back sheaves from each factor of a product, and
tensor. For example, this invertible sheaf could be written O(1) � O(1). People often
write O(a) � O(b) for O(a, b).)

I claim this morphism is a closed immersion. (We are essentially using Exercise 3.2 in
the class 21 notes, problem 40 in problem set 9. But don’t waste your time by looking back
at it.) Let’s check this on the open set where zab 6= 0. Without loss of generality, I’ll take
a = b = 0, to make notation simpler. Then the preimage of this open set in Pm

A × Pn
A is the

locus where x0 6= 0 and y0 6= 0, i.e. U0×V0, U0 and V0 are the usual distinguished open sets
of Pm

A and Pn
A respectively. The coordinates here are x1/0, . . . , xm/0, y1/0, . . . , yn/0. Thus the

map corresponds to zab/00 → xa/0yb/0, which clearly induces a surjection of rings

A[z00/00, . . . , zmn/00] → A[x1/0, . . . , xm/0, y1/0, . . . , yn/0].

(Recall that za0/00 7→ xa/0 and z0b/00 7→ yb/0.)

Hence we are done! This map is called the Segre morphism or Segre embedding. If A is a
field, the image is called the Segre variety — although we don’t yet know what a variety
is!

Here are some useful comments.

3.1. Exercise. Show that the Segre scheme (the image of the Segre morphism) is cut out
by the equations corresponding to

rank





a00 · · · a0n

... . . . ...
am0 · · · amn



 = 1,

i.e. that all 2 × 2 minors vanish. (Hint: suppose you have a polynomial in the aij that
becomes zero upon the substitution aij = xiyj. Give a recipe for subtracting polynomials
of the form monomial times 2 × 2 minor so that the end result is 0.)

3.2. Example. Let’s consider the first non-trivial example, when m = n = 1. We get
P1 × P1

↪→ P3. We get a single equation

rank

(

a00 a01

a10 a11

)

= 1,

i.e. a00a11−a01a10 = 0. We get our old friend, the quadric surface! Hence: the nonsingular
quadric surface wz − xy = 0 is isomorphic to P1 × P1. Note that we can reinterpret the
rulings; I pointed this out on the model. Since (by diagonalizability of quadratics) all
nonsingular quadratics over an algebraically closed field are isomorphic, we have that all
nonsingular quadric surfaces over an algebraically closed field are isomorphic to P1 × P1.
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Note that this is not true even over a field that is not algebraically closed. For example,
over R, w2 + x2 + y2 + z2 = 0 is not isomorphic to P1

R ×R P1
R. Reason: the former has no

real points, while the latter has lots of real points.

3.3. Let’s return to the general Segre situation. We can describe the closed subscheme
alternatively the Proj of the subring R of

A[x0, . . . , xm, y0, . . . , yn]

generated by monomials of equal degree in the x’s and the y’s. Using this, you can give a
co-ordinate free description of this product (i.e. without using the co-ordinates xi and yj):
Pm

A ×A Pn
A = Proj R where

R = ⊕∞

i=0 Symi H0(Pm
A ,O(1))⊗ Symi H0(Pn

A,O(1)).

Kirsten asks an interesting question: show that O(a, b) gives a closed immersion to
projective space if a, b > 0.

You may want to ponder how to think of products of three projective spaces.

4. OTHER SCHEMES DEFINED BY UNIVERSAL PROPERTY: REDUCTION, NORMALIZATION

I now want to define other schemes using universal properties, in ways that are vaguely
analogous to fibered product.

As a warm-up, I’d like to revisit an earlier topic: reduction of a scheme. Recall that if X

is a scheme, we defined a closed immersion Xred
↪→ X. (See the comment just before §1.4

in class 19.) I’d like to revisit this.

4.1. Potentially enlightening exercise. Show that Xred
→ X satisfies the following universal

property: any morphism from a reduced scheme Y to X factors uniquely through Xred.

Y

��>
>>

>>
>>

>

∃! // Xred

}}||
||

||
||

X

.

You can use this as a definition for Xred
→ X. Let me walk you through part of this.

First, prove this for X affine. (Here you use the fact that we know that maps to an affine
scheme correspond to a maps of global sections in the other direction.) Then use the
universal property to show the result for quasiaffine X. Then use the universal property to
show it in general. Oops! I don’t think I’ve defined quasiaffine before. It is any scheme
that can be expressed as an open subset of an affine scheme. I should eventually put
this definition earlier in the course notes, but may not get a chance to. It may appear
in the class 22 notes, which are yet to be written up. The concept is reintroduced yet
again in Exercise 4.4 below.

7



4.2. Normalization.

I now want to tell you how to normalize a reduced Noetherian scheme. A normaliza-
tion of a scheme X is a morphism ν : X̃ → X from a normal scheme, where ν induces
a bijection of components of X̃ and X, and ν gives a birational morphism on each of the
components; it will be nicer still, as it will satisfy a universal property. (I drew a picture
of a normalization of a curve.) Oops! I didn’t define birational until class 27. Please just
plow ahead! I may later patch this anachronism, but most likely I won’t get the chance.

I’ll begin by dealing with the case where X is irreducible, and hence integral. (I’ll then
deal with the more general case, and also discuss normalization in a function field exten-
sion.)

In this case of X irreducible, the normalization satisfies dominant morphism from an
irreducible normal scheme to X, then this morphism factors uniquely through ν:

Y

��=
==

==
==

∃! // X̃

ν
����

��
��

��

X

.

Thus if it exists, then it is unique up to unique isomorphism. We now have to show that
it exists, and we do this in the usual way. We deal first with the case where X is affine, say
X = Spec R, where R is an integral domain. Then let R̃ be the integral closure of R in its
fraction field Frac(R).

4.3. Exercise. Show that ν : Spec R̃ → Spec R satisfies the universal property.

4.4. Exercise. Show that normalizations exist for any quasiaffine X (i.e. any X that can be
expressed as an open subset of an affine scheme).

4.5. Exercise. Show that normalizations exist in general.
E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 24

RAVI VAKIL

CONTENTS

1. Normalization, continued 1
2. Sheaf Spec 3
3. Sheaf Proj 4

Last day: Fibers of morphisms. Properties preserved by base change: open immer-
sions, closed immersions, Segre embedding. Other schemes defined by universal prop-
erty: reduction, normalization.

Today: normalization (in a field extension), “sheaf Spec”, “sheaf Proj”, projective
morphism.

1. NORMALIZATION, CONTINUED

Last day, I defined the normalization of a reduced scheme. I have an interesting ques-
tion for experts: there is a reasonable extension to schemes in general; does anything go
wrong? I haven’t yet given this much thought, but it seems worth exploring.

I described normalization last day in the case when X is irreducible, and hence integral.
In this case of X irreducible, the normalization satisfies the universal property, that if
Y → X is any other dominant morphism from a normal scheme to X, then this morphism
factors uniquely through ν:

Y

��
==

==
==

=

∃!
// X̃

ν
����

��
��

��

X

.

Thus if it exists, then it is unique up to unique isomorphism. We then showed that it
exists, using an argument we saw for the third time. (The first time was in the existence
of the fibered product. The second was an argument for the existence of the reduction
morphism.) The ring-theoretic case got us started: if X = Spec R, then and R̃ is the integral
closure of R in its fraction field Frac(R), then I gave as an exercise that ν : Spec R̃ → Spec R

satisfies the universal property.

Date: Thursday, January 19, 2006. Last minor update June 28, 2007. c© 2005, 2006, 2007 by Ravi Vakil.
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1.1. Exercise. Show that the normalization morphism is surjective. (Hint: Going-up!)

We now mention some bells and whistles. The following fact is handy.

1.2. Theorem (finiteness of integral closure). — Suppose A is a domain, K = Frac(A), L/K is a
finite field extension, and B is the integral closure of A in L (“the integral closure of A in the field
extension L/K”, i.e. those elements of L integral over A).
(a) if A is integrally closed, then B is a finitely generated A-module.
(b) if A is a finitely generated k-algebra, then B (the integral closure of A in its fraction field) is a
finitely generated A-module.

I hope to type up a proof of these facts at some point to show you that they are not that
bad. Much of part (a) was proved by Greg Brumfiel in 210B last year.

Warning: (b) does not hold for Noetherian A in general. I find this very alarming. I
don’t know an example offhand, but one is given in Eisenbud’s book.

1.3. Exercise. Show that dim X̃ = dim X (hint: see our going-up discussion).

1.4. Exercise. Show that if X is an integral finite-type k-scheme, then its normalization
ν : X̃ → X is a finite morphism.

1.5. Exercise. Explain how to generalize the notion of normalization to the case where X

is a reduced Noetherian scheme (with possibly more than one component). This basically
requires defining a universal property. I’m not sure what the “perfect” definition, but all
reasonable universal properties should lead to the same space.

1.6. Exercise. Show that if X is an integral finite type k-scheme, then its non-normal
points form a closed subset. (This is a bit trickier. Hint: consider where ν∗OX̃ has rank 1.)
I haven’t thought through all the details recently, so I hope I’ve stated this correctly.

Here is an explicit example to think through some of these ideas.

1.7. Exercise. Suppose X = Spec Z[15i]. Describe the normalization X̃ → X. (Hint: it isn’t
hard to find an integral extension of Z[15i] that is integrally closed. By the above discus-
sion, you’ve then found the normalization!) Over what points of X is the normalization
not an isomorphism?

1.8. Exercise. (This is an important generalization!) Suppose X is an integral scheme.
Define the normalization of X, ν : X̃ → X, in a given finite field extension of the function field
of X. Show that X̃ is normal. (This will be hard-wired into your definition.) Show that if
either X is itself normal, or X is finite type over a field k, then the normalization in a finite
field extension is a finite morphism.
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Let’s try this in a few cases.

1.9. Exercise. Suppose X = Spec Z (with function field Q). Find its integral closure in the
field extension Q(i).

A finite extension K of Q is called a number field, and the integral closure of Z in K the
ring of integers of K, denoted OK. (This notation is a little awkward given our other use
of the symbol O.) By the previous exercises, SpecOK is a Noetherian normal domain of
dimension 1 (hence regular). This is called a Dedekind domain. We think of it as a smooth
curve.

1.10. Exercise. (a) Suppose X = Spec k[x] (with function field k(x)). Find its integral
closure in the field extension k(y), where y2 = x2 +x. (Again we get a Dedekind domain.)
(b) Suppose X = P1, with distinguished open Spec k[x]. Find its integral closure in the
field extension k(y), where y2 = x2 + x. (Part (a) involves computing the normalization
over one affine open set; now figure out what happens over the “other”.)

2. SHEAF SPEC

Given an A-algebra, B, we can take its Spec to get an affine scheme over Spec A: Spec B →
Spec A. I’ll now give a universal property description of a globalization of that notation.
We will take an arbitrary scheme X, and a quasicoherent sheaf of algebras A on it. We will
define how to take Spec of this sheaf of algebras, and we will get a scheme SpecA → X

that is “affine over X”, i.e. the structure morphism is an affine morphism.

We will do this as you might by now expect: for each affine on X, we use our affine con-
struction, and show that everything glues together nicely. We do this instead by describ-
ing SpecA → X in terms of a good universal property: given any morphism π : Y → X

along with a morphism of OX-modules

α : A → π∗OY,

there is a unique map Y → SpecA factoring π, i.e. so that the following diagram com-
mutes,

Y
π

��
==

==
==

==

∃!
// SpecA

β
||xx

xx
xx

xx
x

X

and an isomorphism φ : A → β∗OSpecA inducing α.

(For experts: we need OX-modules, and to leave our category of quasicoherent sheaves
on X, because we only showed that the pushforward of quasicoherent sheaves are quasi-
coherent for certain morphisms, where the preimage of each affine was a finite union of
affines, the pairwise intersection of which were also finite unions. This notion will soon
be formalized as quasicompact and quasiseparated.)
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At this point we’re getting to be experts on this, so let’s show that this SpecA exists. In
the case where X is affine, we are done by our affine discussion. In the case where X is
quasiaffine, we are done for the same reason as before. And finally, in the case where X is
general, we are done once again!

In particular, note that SpecA → X is an affine morphism.

2.1. Exercise. Show that if f : Z → X is an affine morphism, then we have a natural
isomorphism Z ∼= Spec f∗OZ of X-schemes.

Hence we can recover any affine morphism in this way. More precisely, a morphism is
affine if and only if it is of the form SpecA → X.

2.2. Exercise (Spec behaves well with respect to base change). Suppose f : Z → X is any
morphism, and A is a quasicoherent sheaf of algebras on X. Show that there is a natural
isomorphism Z ×X SpecA ∼= Spec f∗A.

An important example of this Spec construction is the total space of a finite rank locally
free sheaf F , which is a vector bundle. It is Spec Sym∗ F∨.

2.3. Exercise. Show that this is a vector bundle, i.e. that given any point p ∈ X, there is a
neighborhood p ∈ U ⊂ X such that Spec Sym∗ F∨|U ∼= An

U. Show that F is isomorphic to
the sheaf of sections of it.

As an easy example: if F is a free sheaf of rank n, then Spec Sym∗ F∨ is called An
X,

generalizing our earlier notions of An
A. As the notion of a free sheave behaves well with

respect to base change, so does the notion of An
X, i.e. given X → Y, An

Y ×Y X ∼= An
X.

Here is one last fact that might come in handy.

2.4. Exercise. Suppose f : SpecA → X is a morphism. Show that the category of quasi-
coherent sheaves on Spec A is “essentially the same as” (=equivalent to) the category of
quasicoherent sheaves on X with the structure of A-modules (quasicoherent A-modules
on X).

The reason you could imagine caring is when X is quite simple, and SpecA is compli-
cated. We’ll use this before long when X ∼= P1, and SpecA is a more complicated curve. (I
drew a picture of this.)

3. SHEAF PROJ

We’ll now do a global (or “sheafy”) version of Proj, which we’ll denote Proj.

Suppose now that S∗ is a quasicoherent sheaf of graded algebras of X. To be safe, let me
assume that S∗ is locally generated in degree 1 (i.e. there is a cover by small affine open
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sets, where for each affine open set, the corresponding algebra is generated in degree 1),
and S1 is finite type. We will define ProjS∗.

The essential ideal is that we do this affine by affine, and then glue the result together.
But as before, this is tricky to do, but easier if you state the right universal property.

As a preliminary, let me re-examine our earlier theorem, that “Maps to Pn correspond
to n + 1 sections of an invertible sheaf, not all vanishing at any point (= generated by
global sections), modulo sections of O∗

X.”

I will now describe this in a more “relative” setting, where relative means that we do
this with morphisms of schemes. We begin with a relative notion of base-point free. Sup-
pose f : Y → X is a morphism, and L is an invertible sheaf on Y. We say that L is relatively
base point free if for every point p ∈ X, q ∈ Y, with f(q) = p, there is a neighborhood U

for which there is a section of L over f−1(U) not vanishing at q. Similarly, we define rela-
tively generated by global sections if there is a neighborhood U for which there are sections
of L over f−1(U) generating every stalk of f−1(U). This is admittedly hideous terminology.
(One can also define relatively generated by global sections at a point p ∈ Y. See class 16 where
we defined these notions in a non-relative setting. In class 32, this will come up again.)
More generally, we can define the notion of “relatively generated by global sections by a
subsheaf of f∗L”.

Definition. (ProjS∗,OProjS∗
(1)) → X satisfies the following universal property. Given

any other X-scheme Y with an invertible sheaf L, and a map of graded OX-algebras
α : S∗ → ⊕n=0π∗L

⊗n,

such that L is relatively generated by the global sections of α(S1), there is a unique fac-
torization

Y
π

��
==

==
==

==

∃!f
// ProjS∗

β

{{xx
xx

xx
xx

x

X

and a canonical isomorphism L ∼= f∗OProjS∗
(1) and a morphism S∗ → ⊕nβ∗O(n) inducing

α.

In particular, ProjS∗ comes with an invertible sheaf OProjS∗
(1), and this O(1) should be

seen as part of the data.

This definition takes some getting used to.

But we prove this as usual!

We first deal with the case where X is affine, say X = Spec A, S∗ = S̃∗. You won’t be
surprised to hear that in this case, (Proj S∗,O(1)) satisfies the universal property.

We outline why. Clearly, given a map Y → Proj S∗, we get a pullback map α. Con-
versely, given such a pullback map, we want to show that this induces a (unique) map
Y → Proj S∗. Now because S∗ is generated in degree 1, we have a closed immersion
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Proj S∗ ↪→ Proj Sym∗ S1. The map in degree 1, S1 → π∗L, gives a map Y → Proj Sym∗ S1

by our magic theorem “Maps to Pn correspond to n+1 sections of an invertible sheaf, not
all vanishing at any point (= generated by global sections), modulo sections of O∗

X.”

3.1. Exercise. Complete this argument that if X = Spec A, then (ProjS∗,O(1)) satisfies
the universal property.

3.2. Exercise. Show that (ProjS∗,O(1)) exists in general, by following the analogous
universal property argument: show that it exists for X quasiaffine, then in general.

3.3. Exercise (Proj behaves well with respect to base change). Suppose S∗ is a quasicoherent
sheaf of graded algebras on X satisfying the required hypotheses above for ProjS∗ to
exist. Let f : Y → X be any morphism. Give a natural isomorphism

(Proj f∗S∗,OProj f∗S∗
(1)) ∼= (Y ×X ProjS∗, g

∗OProjS∗
(1)) ∼=

where g is the natural morphism in the base change diagram

Y ×X ProjS∗

g
//

��

ProjS∗

��

Y // X.

3.4. Definition. If F is a finite rank locally free sheaf on X. Then Proj Sym∗ F is called
its projectivization. If F is a free sheaf of rank n + 1, then we define Pn

X := Proj Sym∗ F .
(Then Pn

Spec A agrees with our earlier definition of Pn
A.) Clearly this notion behaves well

with respect to base change.

This “relative O(1)” we have constructed is a little subtle. Here are couple of exercises
to give you practice with the concept.

3.5. Exercise. Proj(S∗[t]) ∼= SpecS∗

∐
ProjS∗, where Spec S∗ is an open subscheme, and

ProjS∗ is a closed subscheme. Show that ProjS∗ is an effective Cartier divisor, corre-
sponding to the invertible sheaf OProjN(1). (This is the generalization of the projective
and affine cone. At some point I should give an explicit reference to our earlier exercise
on this.)

3.6. Exercise. Suppose L is an invertible sheaf on X, and S∗ is a quasicoherent sheaf of
graded algebras on X satisfying the required hypotheses above for ProjS∗ to exist. Define
S ′
∗ = ⊕n=0Sn ⊗ Ln. Give a natural isomorphism of X-schemes

(ProjS ′
∗,OProjS ′

∗
(1)) ∼= (ProjS∗,OProjS∗

(1) ⊗ π∗L),

where π : ProjS∗ → X is the structure morphism. In other words, informally speaking,
the Proj is the same, but the O(1) is twisted by L.
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3.7. Projective morphisms.

If you are tuning out because of these technicalities, please tune back in! I now want to
define an essential notion.

Recall that we have recast affine morphisms in the following way: X → Y is an affine
morphism if X ∼= SpecA for some quasicoherent sheaf of algebras A on Y.

I will now define the notion of a projective morphism similarly.

3.8. Definition. A morphism X → Y is projective if there is an isomorphism

X
∼

//

��
==

==
==

==
ProjS∗

||xx
xx

xx
xx

x

Y

for a quasicoherent sheaf of algebras S∗ on Y satisfying the required hypothesis for Proj

to exist.

Two warnings! 1. Notice that I didn’t say anything about the O(1), which is an impor-
tant definition. The notion of affine morphism is affine-local on the target, but this notion
is not affine-local on the target! (In nice circumstances it is, as we’ll see later. We’ll also see
an example where this is not.) 2. Hartshorne gives a different definition; I’m following
the more general definition of Grothendieck. But again, these definitions turn out to be
the same in nice circumstances.

This is the “relative version” of Proj S∗ → Spec A.

3.9. Exercise. Show that closed immersions are projective morphisms. (Hint: Suppose the
closed immersion X → Y corresponds to OY → OX. Consider S0 = OX, Si = OY for i > 1.)

3.10. Exercise (suggested by Kirsten). Suppose f : X ↪→ Pn
S where S is some scheme.

Show that the structure morphism π : X → S is a projective morphism as follows: let
L = f∗OP

n
S
(1), and show that X = Proj π∗L

⊗n.
E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 25

RAVI VAKIL

CONTENTS

1. Separated morphisms 1

2. Valuative criteria for separatedness 10

Last day: Normalization (in a finite field extension), “sheaf Spec”, “sheaf Proj”, pro-
jective morphisms.

Today: separatedness, definition of variety.

0.1. Here is a notion I should have introduced earlier: induced reduced subscheme structure.
Suppose X is a scheme, and S is a closed subset of X. Then there is a unique reduced closed
subscheme Z of X “supported on S”. More precisely, it can be defined by the following
universal property: for any morphism from a reduced scheme Y to X, whose image lies in
S (as a set), this morphism factors through Z uniquely. Over an affine X = Spec R, we get
Spec R/I(S). (Exercise: verify this.) For example, if S is the entire underlying set of X, we
get Xred.

1. SEPARATED MORPHISMS

We will now describe a very useful notion, that of morphisms being separated. Separat-
edness is one of the definitions in algebraic geometry (like flatness) that seems initially
unmotivated, but later turns out to be the answer to a large number of desiderata.

Here are some initial reasons. First, in some sense it is the analogue of Hausdorff. A
better description is the following: if you take the definition I’m about to give you and
apply it to the “usual” topology, you’ll get a correct (if unusual) definition of Hausdorff-
ness. The reason this doesn’t give Hausdorffness in the category of schemes is because
the topology on the product is not the product topology. (An earlier exercise was to show
that A

2
k does not have the product topology on A

1
k×kA

1
k.) One benefit of this definition is

that we will be finally ready to define a variety, in a way that corresponds to the classical
definition.

Date: Tuesday, January 24, 2006. Small update June 20.
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Second, a separated morphism has the property that the intersection of a two affine
open sets is affine, which is precisely the odd hypothesis needed to make Cech cohomol-
ogy work.

A third motivation is that nasty line with doubled origin, which is a counterexample to
many statements one might hope are true. The line with double origin is not separated,
and by adding a separatedness hypothesis, the desired statements turn out to be true.

A fourth motivation is to give a good foundation for the notion of rational maps, which
we will discuss shortly.

A lesson arising from the construction is the importance of the diagonal morphism.
More precisely given a morphism X → Y, nice consequences can be leveraged from good
behavior of the diagonal morphism δ : X → X ×Y X, usually through fun diagram chases.
This is a lesson that applies across many fields of mathematics. (Another nice gift the
diagonal morphism: it will soon give us a good algebraic definition of differentials.)

1.1. Proposition. — Let X → Y be a morphism of schemes. Then the diagonal morphism δ : X →

X ×Y X is a locally closed immersion.

This locally closed subscheme of X ×Y X (the diagonal) will be denoted ∆.

Proof. We will describe a union of open subsets of X ×Y X covering the image of X, such
that the image of X is a closed immersion in this union.

1.2. Say Y is covered with affine opens Vi and X is covered with affine opens Uij, with
π : Uij → Vi. Then the diagonal is covered by Uij ×Vi

Uij. (Any point p ∈ X lies in some
Uij; then δ(p) ∈ Uij ×Vi

Uij.) Note that δ−1(Uij ×Vi
Uij) = Uij: Uij ×Vi

Uij
∼= Uij ×Y Uij

because Vi ↪→ Y is a monomorphism. Then because open immersions behave well with
respect to base change, we have the fiber diagram

Uij
//

��

X

��
Uij ×Y X // X ×Y X

from which δ−1(Uij×Y X) = Uij. As δ−1(Uij×Y Uij) contains Uij, we must have δ−1(Uij×Y

Uij) = Uij.

Finally, we’ll check that Uij → Uij ×Vi
Uij is a closed immersion. Say Vi = Spec S

and Uij = Spec R. Then this corresponds to the natural ring map R ×S R → R, which is
obviously surjective. �

(A picture is helpful here.)

Note that the open subsets we described may not cover X ×Y X, so we have not shown
that δ is a closed immersion.
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1.3. Definition. A morphism X → Y is said to be separated if the diagonal morphism
δ : X → X ×Y X is a closed immersion. If R is a ring, an R-scheme X is said to be separated
over R if the structure morphism X → Spec R is separated. When people say that a scheme
(rather than a morphism) X is separated, they mean implicitly that some morphism is
separated. For example, if they are talking about R-schemes, they mean that X is separated
over R.

Thanks to Proposition 1.1, a morphism is separated if and only if the image of the
diagonal morphism is closed.

1.4. Important easy exercise. Show that open immersions and closed immersions are sepa-
rated. (Answer: Show that monomorphisms are separated. Open and closed immersions
are monomorphisms, by earlier exercises. Alternatively, show this by hand.)

1.5. Important easy exercise. Show that every morphism of affine schemes is separated.
(Hint: this was essentially done in Proposition 1.1.)

I’ll now give you an example of something separated that is not affine. The follow-
ing single calculation will eventually easily imply that all quasiprojective morphisms are
separated.

1.6. Proposition. — P
n
Z

→ Spec Z is separated.

(The identical argument holds with Z replaced by any ring.)

Proof. We cover P
n
Z
×Z P

n
Z

with open sets of the form Ui × Uj, where U0, . . . , Un form
the “usual” affine open cover. The case i = j was taken care of before, in the proof of
Proposition 1.1. For i 6= j, we may take i = 0, j = n. Then

U0 ×Z Un
∼= Spec Z[x1/0, . . . , xn/0, y0/n, . . . , yn−1/n],

and the image of the diagonal morphism meets this open set in the closed subscheme
y0/nxn/0 = 1, xi/0 = xn/0yi/n, yj/n = y0/nxj/0. �

1.7. Exercise. Verify the last sentence of the proof. Note that you should check that the
diagonal morphism restricted to this open set has source U0 ∩ Un; see §1.2.

1.8. Exercise. Show that the line with doubled origin X is not separated, by verifying that
the image of the diagonal morphism is not closed. (Another argument is given below, in
Exercise 1.28.)

We finally define then notion of variety!

1.9. Definition. A variety over a field k is defined to be a reduced, separated scheme of
finite type over k. We may use the language k-variety.
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Example: a reduced finite type affine k-scheme is a variety. In other words, to check if
Spec k[x1, . . . , xn]/(f1, . . . , fr) is a variety, you need only check reducedness.

Notational caution: In some sources (including, I think, Mumford), the additional con-
dition of irreducibility is imposed. We will not do this. Also, it is often assumed that k is
algebraically closed. We will not do this either.

Here is a very handy consequence of separatedness!

1.10. Proposition. — Suppose X → Spec R is a separated morphism to an affine scheme, and U

and V are affine open sets of X. Then U ∩ V is an affine open subset of X.

We’ll prove this shortly.

Consequence: if X = Spec A, then the intersection of any two affine opens is open (just
take R = Z in the above proposition). This is certainly not an obvious fact! We know that
the intersection of any two distinguished affine open sets is affine (from D(f) ∩ D(g) =

D(fg)), but we have very little handle on affine open sets in general.

Warning: this property does not characterize separatedness. For example, if R = Spec k

and X is the line with doubled origin over k, then X also has this property. This will be
generalized slightly in Exercise 1.31.

Proof. Note that (U ×Spec R V) ∩ ∆ = U ∩ V , where ∆ is the diagonal. (This is clearest with
a figure. See also §1.2.)

U×Spec R V is affine (Spec S×Spec R Spec T = Spec S⊗R T ), and ∆ is a closed subscheme of
an affine scheme, and hence affine. �

1.11. Sample application: The graph morphism.

1.12. Definition. Suppose f : X → Y is a morphism of Z-schemes. The morphism Γ : X →

X ×Z Y given by Γ = (id, f) is called the graph morphism.

1.13. Proposition. — Show that Γ is a locally closed immersion. Show that if Y is a separated
Z-scheme (i.e. the structure morphism Y → Z is separated), then Γ is a closed immersion.

This will be generalized in Exercise 1.29.

Proof by diagram.

X //

��

X ×Z Y

��

Y
δ // Y ×Z Y

�
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1.14. Quasiseparated morphisms.

We now define a handy relative of separatedness, that is also given in terms of a prop-
erty of the diagonal morphism, and has similar properties. The reason it is less famous is
because it automatically holds for the sorts of schemes that people usually deal with. We
say a morphism f : X → Y is quasiseparated if the diagonal morphism δ : X → X ×Y X is
quasicompact. I’ll give a more insightful translation shortly, in Exercise 1.15.

Most algebraic geometers will only see quasiseparated morphisms, so this may be con-
sidered a very weak assumption. Here are two large classes of morphisms that are qua-
siseparated. (a) As closed immersions are quasicompact (not hard), separated implies
quasiseparated. (b) If X is a Noetherian scheme, then any morphism to another scheme is
quasicompact (not hard; Exercise), so any X → Y is quasiseparated. Hence those working
in the category of Noetherian schemes need never worry about this issue.

It is the following characterization which makes quasiseparatedness a useful hypothe-
sis in proving theorems.

1.15. Exercise. Show that f : X → Y is quasiseparated if and only if for any affine open
Spec R of Y, and two affine open subsets U and V of X mapping to Spec R, U ∩ V is a finite
union of affine open sets.

1.16. Exercise. Here is an example of a nonquasiseparated scheme. Let X = Spec k[x1, x2, . . . ],
and let U be X − m where m is the maximal ideal (x1, x2, . . . ). Take two copies of X, glued
along U. Show that the result is not quasiseparated.

In particular, the condition of quasiseparatedness is often paired with quasicompact-
ness in hypotheses of theorems. A morphism f : X → Y is quasicompact and quasisepa-
rated if and only if the preimage of any affine open subset of Y is a finite union of affine
open sets in X, whose pairwise intersections are all also finite unions of affine open sets.

This strong finiteness assumption can be very useful, as the following result shows:

1.17. Proposition. — If X → Y is a quasicompact, quasiseparated morphism, and F is quasico-
herent sheaf on X, show that f∗F is a quasicoherent sheaf on Y.

Proof. The proof we gave earlier (Theorem 2.2 of Class 20) applies without change. We
just didn’t have the name “quasiseparated” to attach to these hypothesis. �

1.18. Theorem. — Both separatedness and quasiseparatedness are preserved by base change.

Proof. Suppose

W

��

// X

��
Y // Z
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is a fiber square. We will show that if Y → Z is separated or quasiseparated, then so is
W → X. The reader should verify (using only category theory!) that

W
δW//

��

W ×X W

��

Y
δY // Y ×Z Y

is a fiber diagram. As the property of being a closed immersion is preserved by base
change (shown earlier when we showed many properties are well behaved under base
change) , if δY is a closed immersion, so is δX.

Quasiseparatedness follows in the identical manner, as quasicompactness is also pre-
served by base change. �

1.19. Proposition. — The condition of being separated is local on the target. Precisely, a morphism
f : X → Y is separated if and only if for any cover of Y by open subsets Ui, f−1(Ui) → Ui is
separated for each i.

Hence affine morphisms are separated, by Exercise 1.5. (Thus finite morphisms are
separated.)

Proof. If X → Y is separated, then for any Ui ↪→ Y, f−1(Ui) → Ui is separated by Theo-
rem 1.18. Conversely, to check if ∆ ↪→ X×Y X is a closed subset, it suffices to check this on
an open cover. If g : X×Y X → Y is the natural morphism, our open cover Ui of Y induces
an open cover g−1(Ui) of X ×Y X. �

1.20. Exercise. Prove that the condition of being quasiseparated is local on the target.
(Hint: the condition of being quasicompact is local on the target by an earlier exercise;
use a similar argument.)

1.21. Proposition. — The condition of being separated is closed under composition. In other
words, if f : X → Y is separated and g : Y → Z is separated, then g ◦ f : X → Z is separated.

Proof. This is a good excuse to show you a very useful fiber diagram:

U ×X V //

��

U ×S V

��

X // X ×S X

6



We are given that a : X ↪→ X×Y X and b : Y → Y ×Z Y are closed immersions, and we wish
to show that X → X ×Z X is a closed immersion. Consider the diagram

X
a // X ×Y X

c //

��

X ×Z X

��

Y
b // Y ×Z Y.

The square on the right is a fiber diagram (see the very useful diagram above). As b is a
closed immersion, c is too (closed immersions behave well under fiber diagrams). Thus
c ◦ a is a closed immersion (the composition of two closed immersions is also a closed
immersion). �

The identical argument (with “closed immersion” replaced by “quasicompact”) shows
that the condition of being quasiseparated is closed under composition.

1.22. Proposition. — Any quasiprojective morphism is separated.

As a corollary, any reduced quasiprojective k-scheme is a k-variety.

Proof. Open immersions are separated by Exercise 1.4. Hence by Proposition 1.21, it suf-
fices to check that projective morphisms are separated. We can check that this locally on
the target by Proposition 1.19, so it suffices to check that f : X → Z where f factors through
P

n
Z, and X ↪→ P

n
Z is a closed immersion. But closed immersions are separated, so X ↪→ P

n
Z is

separated, so it suffices to check P
n
Z → Z is separated. But this is obtained by base change

from P
n
Z

→ Spec Z, so we are done (as this latter morphism is separated by the previous
proposition, and separatedness is preserved by base change by Proposition 1.18). �

1.23. Proposition. — Suppose f : X → Y and f ′ : X ′
→ Y ′ are separated morphisms of S-schemes.

Then the product morphism f × f ′ : X ×S X ′
→ Y ×S Y ′ is separated.

Proof. Consider the following diagram, and use the fact that separatedness is preserved
under base change and composition.

X ×S X ′ //

zzvvvvvvvvv
X ×S Y ′

xxrrrrrrrrrrr

&&LLLLLLLLLLL
// Y ×S Y ′

##GGGGGGGGG

X ′ // Y ′ X // Y

�

1.24. A very fun result.

We now come to a very useful, but bizarre-looking, result.
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1.25. Proposition. — Let P be a class of morphisms that is preserved by base change and compo-
sition. Suppose

X
f //

h ��?
??

??
??

Y

g
����

��
��

�

Z

is a commuting diagram of schemes.

(a) Suppose that the diagonal morphism δg : Y → Y ×Z Y is in P and h : X → Z is in P. The
f : X → Y is in P.

(b) In particular, if closed immersions are in P, then if h is in P and g is separated, then f is
in P.

I like this because when you plug in different P, you get very different-looking (and
non-obvious) consequences.

Here are some examples.

Locally closed immersions are separated, so part (a) applies, and the first clause always
applies. In other words, if you factor a locally closed immersion X → Z into X → Y → Z,
then X → Y must be a locally closed immersion.

A morphism (over Spec k) from a projective k-scheme to a separated k-scheme is always
projective.

Possibilities for P in case (b) include: finite morphisms, morphisms of finite type, pro-
jective morphisms (needed exercise: closed immersions are projective), closed immer-
sions, affine morphisms.

Proof. By the fibered square

X
Γ //

��

X ×Z Y

��

Y
δY // Y ×Z Y

we see that the graph morphism Γ : X → X ×Z Y is in P (Definition 1.12), as P is closed
under base change. By the fibered square

X ×Z Y
h′

//

��

Y

g

��
X

h // Z

the projection h ′ : X ×Z Y → Y is in P as well. Thus f = h ′ ◦ Γ is in P �

1.26. Exercise. Show that a k-scheme is separated (over k) iff it is separated over Z.

Here now are some fun and useful exercises.
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1.27. Useful exercise: The locus where two morphisms agree. We can now make sense of the
following statement. Suppose

f, g : X

��>
>>

>>
>>

// Y

����
��

��
��

Z

are two morphisms over Z. Then the locus on X where f and g agree is a locally closed
subscheme of X. If Y → Z is separated, then the locus is a closed subscheme of X. More
precisely, define V to be the following fibered product:

V //

��

Y

δ
��

X
(f,g)

// Y ×Z Y.

As δ is a locally closed immersion, V → X is too. Then if h : W → X is any scheme such
that g ◦ h = f ◦ h, then h factors through V . (Put differently: we are describing V ↪→ X by
way of a universal property. Taking this as the definition, it is not a priori clear that V is a
locally closed subscheme of X, or even that it exists.) Now we come to the exercise: prove
this (the sentence before the parentheses). (Hint: we get a map g ◦h = f ◦h : W → Y. Use
the definition of fibered product to get W → V .)

1.28. Exercise. Show that the line with doubled origin X is not separated, by finding
two morphisms f1, f2 : W → X whose domain of agreement is not a closed subscheme (cf.
Proposition 1.1). (Another argument was given above, in Exercise 1.8.)

1.29. Exercise. Suppose π : Y → X is a morphism, and s : X → Y is a section of a morphism,
i.e. π ◦ s is the identity on X. Show that s is a locally closed immersion. Show that if π is
separated, then s is a closed immersion. (This generalizes Proposition 1.13.)

1.30. Less important exercise. Suppose P is a class of morphisms such that closed immer-
sions are in P, and P is closed under fibered product and composition. Show that if X → Y

is in P then Xred
→ Yred is in P. (Two examples are the classes of separated morphisms and

quasiseparated morphisms.) (Hint:

Xred //

%%KKKKKKKKKKK
X ×Y Yred

��

// Yred

��
X // Y

)

1.31. Exercise. Suppose π : X → Y is a morphism or a ring R, Y is a separated R-scheme, U
is an affine open subset of X, and V is an affine open subset of Y. Show that U∩π−1V is an
affine open subset of X. (Hint: this generalizes Proposition 1.9 of the Class 25 notes. Use
Proposition 1.12 or 1.13.) This will be used in the proof of the Leray spectral sequence.
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2. VALUATIVE CRITERIA FOR SEPARATEDNESS

Describe fact that some people love. It can be useful. I’ve never used it. But it gives
good intuition.

It is possible to verify separatedness by checking only maps from valuations rings.

We begin with a valuative criterion that applies in a case that will suffice for the interests
of most people, that of finite type morphisms of Noetherian schemes. We’ll then give a
more general version for more general readers.

2.1. Theorem (Valuative criterion for separatedness for morphisms of finite type of Noetherian
schemes). — Suppose f : X → Y is a morphism of finite type of Noetherian schemes. Then f

is separated if and only if the following condition holds. For any discrete valuation ring R with
function field K, and any diagram of the form

(1) Spec K
� _

��

// X

f

��
Spec R // Y

(where the vertical morphism on the left corresponds to the inclusion R ↪→ K), there is at most one
morphism Spec R → X such that the diagram

(2) Spec K //
� _

��

X

f

��
Spec R

<<

// Y

commutes.

A useful thing to take away from this statement is the intuition behind it. We think of
Spec R as a “germ of a curve”, and Spec K as the “germ minus the origin”. Then this says
that if we have a map from a germ of a curve to Y, and have a lift of the map away from
the origin to X, then there is at most one way to lift the map from the entire germ. (A
picture is helpful here.)

For example, this captures the idea of what is wrong with the map of the line with the
doubled origin over k: we take Spec R to be the germ of the affine line at the origin, and
consider the map of the germ minus the origin to the line with doubled origin. Then we
have two choices for how the map can extend over the origin.

2.2. Exercise. Make this precise: show that the line with the doubled origin fails the
valuative criterion for separatedness.

Proof. (This proof is more telegraphic than I’d like. I may fill it out more later. Because
we won’t be using this result later in the course, you should feel free to skip it, but you
may want to skim it.) One direction is fairly straightforward. Suppose f : X → Y is
separated, and such a diagram (1) were given. suppose g1 and g2 were two morphisms
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Spec R → X making (2) commute. Then g = (g1, g2) : Spec R → X ×Y X is a morphism,
with g(Spec K) contained in the diagonal. Hence as Spec K is dense in Spec R, and g is
continuous, g(Spec R) is contained in the closure of the diagonal. As the diagonal is closed
(the separated hypotheses), g(SpecR) is also contained set-theoretically in the diagonal. As
Spec R is reduced, g factors through the reduced induced subscheme structure (§0.1) of
the diagonal. Hence g factors through the diagonal:

Spec R // X
δ // X ×Y X,

which means g1 = g2 by Exercise 1.27.

Suppose conversely that f is not separated, i.e. that the diagonal ∆ ⊂ X ×Y X is not
closed. As X ×Y X is Noetherian (X is Noetherian, and X ×Y X → X is finite type as it is
obtained by base change from the finite type X → Y) we have a well-defined notion of

dimension of all irreducible closed subsets, and it is bounded. Let P be a point in ∆ − ∆

of largest dimension. Let Q be a point in ∆ such that P ∈ Q. (A picture is handy here.)
Let Z be the scheme obtained by giving the reduced induced subscheme structure to Q.
Then P is a codimension 1 point on Z; let R ′ = OZ,P be the local ring of Z at P. Then R ′ is
a Noetherian local domain of dimension 1. Let R ′′ be the normalization of R. Choose any
point P ′′ of Spec R ′′ mapping to P; such a point exists because the normalization morphism
Spec R → Spec R ′ is surjective (normalization is an integral extension, hence surjective by
the Going-up theorem, lecture 21 theorem 1.5). Let R be the localization of R ′′ at P ′′. Then
R is a normal Noetherian local domain of dimension 1, and hence a discrete valuation
ring. Let K be its fraction field. Then Spec R → X ×Y X does not factor through the
diagonal, but Spec K → X ×Y X does, and we are done. �

Here is a more general statement. I won’t give a proof here, but I think the proof given
in Hartshorne Theorem II.4.3 applies (even though the hypotheses are more restrictive).

2.3. Theorem (Valuative criterion of separatedness). — Suppose f : X → Y is a quasicompact,
quasiseparated morphism. Then f is separated if and only if the following condition holds. For any
valuation ring R with function field K, and or any diagram of the form (1), there is at most one
morphism Spec R → X such that the diagram (2) commutes.

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 26

RAVI VAKIL

CONTENTS

1. Proper morphisms 1

Last day: separatedness, definition of variety.

Today: proper morphisms.

I said a little more about separatedness of moduli spaces, for those familiar such objects.
Suppose we are interested in a moduli space of a certain kind of object. That means that
there is a scheme M with a “universal family” of such objects over M, such that there is
a bijection between families of such objects over an arbitrary scheme S, and morphisms
S → B. (One direction of this map is as follows: given a morphism S → B, we get a
family of objects over S by pulling back the universal family over B.) The separatedness
of the moduli space (over the base field, for example, if there is one) can be interpreted as
follows. Fix a valuation ring A (or even discrete valuation ring, if our moduli space of of
finite type) with fraction field K. We interpret Spec intuitively as a germ of a curve, and we
interpret Spec K as the germ minus the “origin” (an analogue of a small punctured disk).
Then we have a family of objects over Spec K (or over the punctured disk), or equivalently
a map Spec K → M, and the moduli space is separated if there is at most one way to fill in
the family over the origin, i.e. a family over Spec A.

1. PROPER MORPHISMS

I’ll now tell you about a new property of morphisms, the notion of properness. You can
think about this in several ways.

Recall that a map of topological spaces (also known as a continuous map!) is said to
be proper if the preimage of compact sets is compact. Properness of morphisms is an
analogous property. For example, proper varieties over C will be the same as compact in
the “usual” topology.

Alternatively, we will see that projective morphisms are proper — this is the hardest
thing we will prove — so you can see this as nice property satisfied by projective mor-
phisms, and hence as a generalization of projective morphisms. Indeed, in some sense,

Date: Thursday, January 26, 2006. Minor update May 28.
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essentially all interesting properties of projective morphisms that don’t explicitly involve
O(1) turn out to be properties of proper morphisms. The key tool in showing such re-
sults is Chow’s Lemma, which I will state but not prove. Like separatedness, there is a
valuative criterion for properness.

Definition. We say a map of topological spaces (i.e. a continuous map) f : X → Y is
closed if for each closed subset S ⊂ X, f(S) is also closed. (This is the definition used
elsewhere in mathematics.) We say a morphism of schemes is closed if the underlying
continuous map is closed. We say that a morphism of schemes f : X → Y is universally
closed if for every morphism g : Z → Y, the induced Z×Y X → Z is closed. In other words,
a morphism is universally closed if it remains closed under any base change. (A note on
terminology: if P is some property of schemes, then a morphism of schemes is said to be
“universally P” if it remains P under any base change.)

A morphism f : X → Y is proper if it is separated, finite type, and universally closed.

As an example: we expect that A1
C

→ Spec C is not proper, because the complex mani-
fold corresponding to A1

C
is not compact. However, note that this map is separated (it is a

map of affine schemes), finite type, and closed. So the “universally” is what matters here.
What’s the base change that turns this into a non-closed map? Consider A1

C
× P1

C
→ P1

C
.

1.1. Exercise. Show that A1
C

→ Spec C is not proper.

Here are some examples of proper maps.

1.2. Closed immersions are proper: they are clearly separated (as affine morphisms are
separated). They are finite type. After base change, they remain closed immersions, and
closed immersions are always closed.

More generally, finite morphisms are proper: they are separated (as affine), and finite
type. The notion of “finite morphism” behaves well under base change, and we have
checked that finite morphisms are always closed (I believe in class 21, using the Going-up
theorem).

I mentioned that we are going to show that projective morphisms are proper. In fact, fi-
nite morphisms are projective (and closed immersions are finite), so the previous two facts
will follow from our fancier fact. I should have explained earlier why finite morphisms
are projective, but I’ll do so now. Suppose X → Y is a finite morphism, i.e. X = SpecA

where A is a finite type sheaf of algebras. I will now show that X = ProjS∗, where S∗ is a
sheaf of graded algebras, satisfying all of our various conditions: S0 = OY, S∗ is “locally
generated” by S1 as a S0-algebra (i.e. this is true over every open affine subset of Y). Given
the statement, you might be able to guess what S∗ should be. I must tell you what Sn is,
and how to multiply. Take Sn = A for n > 0, with the “obvious” map.

1.3. Exercise. Verify that X = ProjS∗. What is OProjS∗
(1)?

2



1.4. Properties of proper morphisms.

1.5. Proposition. —

(a) The notion of “proper morphism” is stable under base change.
(b) The notion of “proper morphism” is local on the target (i.e. f : X → Y is proper if and only

if for any affine open cover Ui → Y, f−1(Ui) → Ui is proper). Note that the “only if”
direction follows from (a) — consider base change by Ui ↪→ Y.

(c) The notion of “proper morphism” is closed under composition.
(d) The product of two proper morphisms is proper (i.e. if f : X → Y and g : X ′

→ Y ′ are
proper, where all morphisms are morphisms of Z-schemes) then f×g : X×ZX ′

→ Y×ZY ′

is proper.
(e) Suppose

(1) X
f //

g

��?
??

??
??

Y
h

����
��

��
�

Z

is a commutative diagram, and g is proper, and h is separated. Then f is proper.
(f) (I don’t know if this is useful, but I may as well say it anyway.) Suppose (1) is a commu-

tative diagram, and f is surjective, g is proper, and h is separated and finite type. Then h

is proper.

Proof. (a) We have already shown that the notions of separatedness and finite type are
local on the target. The notion of closedness is local on the target, and hence so is the
notion of universal closedness.

(b) The notions of separatedness, finite type, and universal closedness are all preserved
by fiber product. (Notice that this is why universal closedness is better than closedness
— it is automatically preserved by base change!)

(c) The notions of separatedness, finite type, and universal closedness are all preserved
by composition.

(d) Both X ×Z Y → X ′ ×Z Y and X ′ ×Z Y → X ′ ×Z Y ′ are proper, because the notion is
preserved by base change (part (b)). Then their composition is also proper (part (c)).

(e) Closed immersions are proper, so we invoke our magic and weird “property P fact”
from last day.

(f) Exercise. �

We come to the hardest thing I will prove today.

1.6. Theorem. — Projective morphisms are proper.
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It is not easy to come up with an example of a morphism that is proper but not projec-
tive! I’ll give an simple example before long of a proper but not projective surface (over a
field), once we have the notion of the fact that line bundles on nice families of curves have
constant degree. Once we discuss blow-ups, I’ll give Hironaka’s example of a proper but
not projective nonsingular threefold over C.

I’ll give part of the proof today, and the rest next day (because I thought I had a simpli-
fication that I realized this morning didn’t work out).

Proof. Suppose f : X → Y is projective. Because the notion of properness is local on
the base, we may assume that Y is affine, say Spec A. Then X ↪→ Pn

A for some n. As
closed immersions are proper (§1.2), and the composition of two proper morphisms is
proper, it suffices to prove that P

n
A → Spec A is proper. However, we have shown that

projective morphisms are separated (last day), and finite type, so it suffices to show that
Pn

A → Spec A is universally closed.

We will next show that it suffices to show that Pn
R → Spec R is closed for all rings R.

Indeed, we need to show that given any base change X → Spec A, the resulting base
changed morphisms Pn

X → X is closed. But the notion of being “closed” is local on the
base, so we can replace X by an affine cover.

Next day I will complete the proof by showing that Pn
A → Spec A is closed. This is some-

times called the fundamental theorem of elimination theory. Here are some examples to
show you that this is a bit subtle.

First, let A = k[a, b, c, . . . , i], and consider the closed subscheme of P2
A (taken with

coordinates x, y, z) corresponding to ax + by + cz = 0, dx + ey + fz = 0, gx + hy + iz = 0.
Then we are looking for the locus in Spec A where these equations have a non-trivial
solution. This indeed corresponds to a Zariski-closed set — where

det





a b c

d e f

g h i



 = 0.

As a second example, let A = k[a0, a1, . . . , am, b0, b1, . . . , bn]. Now consider the closed
subscheme of P1

A (taken with coordinates x and y) corresponding to a0x
m+a1x

m−1y+· · ·+

amym = 0 and b0x
n+b1x

m−1y+ · · ·+bnyn = 0. Then we are looking at the locus in Spec A

where these two polynomials have a common root — this is known as the resultant. �

I’ll end my discussion of properness with some results that I’ll not prove and not use.

1.7. Miscellaneous facts.

Here are some enlightening facts.

(a) Proper and affine = finite. (b) Proper and quasifinite = finite.

(We’ll show all three of this in the case of projective morphisms.)
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As an application: quasifinite morphisms from proper schemes to separated schemes
are finite. Here is why: suppose X → Y is a quasifinite morphism over Z, where X is
proper over Z. Then by one of our weird “property P” facts (Proposition 1.24(b) in class
25), X → Y is proper. Hence by (b) above, it is finite.

Here is an explicit example: consider a morphism P1
→ P1 given by two distinct sec-

tions of OP1(2). The fibers are finite, hence this is a finite morphism. (This could also be
checked directly.)

Here is a third fact: If π : X → Y is proper, and F is a coherent sheaf on X, then π∗F is
coherent.

In particular, if X is proper over k, H0(X,F) is finite-dimensional. (This is just the special
case of the morphism X → k.)

1.8. Valuative criterion.

There is a valuative criterion for properness too. I’ve never used it personally, but it
is useful, both directly, and also philosophically. I’ll make statements, and then discuss
some philosophy.

1.9. Theorem (Valuative criterion for properness for morphisms of finite type of Noetherian schemes).
— Suppose f : X → Y is a morphism of finite type of locally Noetherian schemes. Then f is proper
if and only if the following condition holds. For any discrete valuation ring R with function field
K, and or any diagram of the form

(2) Spec K
� _

��

// X

f

��
Spec R // Y

(where the vertical morphism on the left corresponds to the inclusion R ↪→ K), there is exactly one
morphism Spec R → X such that the diagram

(3) Spec K //
� _

��

X

f

��
Spec R

<<

// Y

commutes.

Recall that the valuative criterion for properness was the same, except that exact was
replaced by at most.

In the case where Y is a field, you can think of this as saying that limits of one-parameters
always exist, and are unique.

1.10. Theorem (Valuative criterion of properness). — Suppose f : X → Y is a quasiseparated,
finite type (hence quasicompact) morphism. Then f is proper if and only if the following condition

5



holds. For any valuation ring R with function field K, and or any diagram of the form (2), there is
exactly one morphism Spec R → X such that the diagram (3) commutes.

Uses: (1) intuition. (2) moduli idea: exactly one way to fill it in (stable curves). (3)
motivates the definition of properness for stacks.

E-mail address: vakil@math.stanford.edu
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3. Rational maps 3

4. Examples of rational maps 5

Last day: proper morphisms.

Today: a little more propriety. Rational maps. Curves.

(These notes include some facts discussed in class 28, for the sake of continuity.)

1. PROPER MORPHISMS

Last day we mostly proved:

1.1. Theorem. — Projective morphisms are proper.

We had reduced it to the following fact:

1.2. Proposition. — π : Pn
A → Spec A is a closed morphism.

Proof. Suppose Z ↪→ Pn
A is a closed subset. We wish to show that π(Z) is closed.

Suppose y /∈ π(Z) is a closed point of Spec A. We’ll check that there is a distinguished
open neighborhood D(f) of y in Spec A such that D(f) doesn’t meet π(Z). (If we could
show this for all points of π(Z), we would be done. But I prefer to concentrate on closed
points for now.) Suppose y corresponds to the maximal ideal m of A. We seek f ∈ A − m
such that π∗f vanishes on Z.

A picture helps here, but I haven’t put it in the notes.

Date: Tuesday, January 31, 2006. Updated March 8, 2006.
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Let U0, . . . , Un be the usual affine open cover of Pn
A. The closed subsets π−1y and Z do

not intersect. On the affine open set Ui, we have two closed subsets that do not intersect,
which means that the ideals corresponding to the two open sets generate the unit ideal,
so in the ring of functions on Ui, we can write

1 = ai +
∑

mijgij

where mij ∈ m, and ai vanishes on Z. Note that ai, gij ∈ A[x0/i, x1/i, . . . , xn/i]. So by
multiplying by a sufficiently high power xn

i of xi, we have an equality

xN
i = a ′

i +
∑

mijg
′
ij

on Ui, where both sides are expressions in A[x0, . . . , xn]. We may take N large enough so
that it works for all i. Thus for N ′ sufficiently large, we can write any monomial in x1, . . . ,
xn of degree N ′ as something vanishing on Z plus a linear combination of elements of m
times other polynomials. Hence if S∗ = A[x0, . . . , xn],

SN′ = I(Z)N′ + mSN′

where I(Z)∗ is the graded ideal of functions vanishing on Z. Hence by Nakayama’s
lemma, there exists f ∈ A − m such that

fSN′ ⊂ I(Z)N′.

Thus we have found our desired f!

We are now ready to tackle the proposition in general. Suppose y ∈ Spec A is no longer
necessarily a closed point, and say y = [p]. Then we apply the same argument in Spec Ap.
We get SN′ ⊗ Ap = I(Z)N′ ⊗ Ap + mSN′ ⊗ Ap, from which g(SN′/I(Z)N′) ⊗ Ap = 0 for
some g ∈ Ap − pAp, from which (SN′/I(Z)N′) ⊗ Ap = 0. Now SN′ is a finitely generated
A-module, so there is some f ∈ R − p with fSN ⊂ I(Z) (if the module-generators of SN′ ,
and f1, . . . , fa are annihilate the generators respectively, then take f =

∏
fi), so once again

we have found D(f) containing p, with (the pullback of) f vanishing on Z. �

2. SCHEME-THEORETIC CLOSURE, AND SCHEME-THEORETIC IMAGE

Have I defined scheme-theoretic closure of a locally closed subscheme W ↪→ Y? I think
I have neglected to. It is the smallest closed subscheme of Y containing W. Exercise. Show
that this notion is well-defined. More generally, if f : W → Y is any morphism, define
the scheme-theoretic image as the smallest closed subscheme Z → Y so that f factors
through Z ↪→ Y. Exercise. Show that this is well-defined. (One possible hint: use a
universal property argument.) If Y is affine, the ideal sheaf corresponds to the functions
on Y that are zero when pulled back to Z. Show that the closed set underlying the image
subscheme may be strictly larger than the closure of the set-theoretic image: consider∐

n≥0 Spec k[t]/tn → Spec k[t]. (I suspect that such a pathology cannot occur for finite
type morphisms of Noetherian schemes, but I haven’t investigated.)
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3. RATIONAL MAPS

This is a very old topic, near the beginning of any discussion of varieties. It has ap-
peared late for us because we have just learned about separatedness.

For this section, I will suppose that X and Y are integral and separated, although these
notions are often useful in more general circumstances. The interested reader should con-
sider the first the case where the schemes in question are reduced and separated (but
not necessarily irreducible). Many notions can make sense in more generality (without
reducedness hypotheses for example), but I’m not sure if there is a widely accepted defi-
nition.

A key example will be irreducible varieties, and the language of rational maps is most
often used in this case.

A rational map X 99K Y is a morphism on a dense open set, with the equivalence
relation: (f : U → Y) ∼ (g : V → Y) if there is a dense open set Z ⊂ U ∩ V such that
f|Z = g|Z. (We will soon see that we can add: if f|U∩V = g|U∩V.)

An obvious example of a rational map is a morphism. Another example is a rational
function, which is a rational map to A1

Z
(easy exercise).

3.1. Exercise. Show that you can compose two rational maps f : X 99K Y, g : Y 99K Z if f is
dominant.

3.2. Easy exercise. Show that dominant rational maps give morphisms of function fields
in the opposite direction. (This was problem 37 on problem set 9.)

It is not true that morphisms of function fields give dominant rational maps, or even
rational maps. For example, k[x] and Spec k(x) have the same function field (k(x)), but
there is no rational map Spec k[x] 99K k(x). Reason: that would correspond to a morphism
from an open subset U of Spec k[x], say k[x, 1/f(x)], to k(x). But there is no map of rings
k(x) → k[x, 1/f(x)] for any one f(x).

However, this is true in the case of varieties (see Proposition 3.4 below).

A rational map f : X → Y is said to be birational if it is dominant, and there is another
morphism (a “rational inverse”) that is also dominant, such that f ◦ g is (in the same
equivalence class as) the identity on Y, and g ◦ f is (in the same equivalence class as) the
identity on X.

A morphism is birational if it is birational as a rational map. We say X and Y are
birational to each other if there exists a birational map X 99K Y. This is the same as our
definition before. Birational maps induce isomorphisms of function fields.

3.3. Important Theorem. — Two S-morphisms f1, f2 : U → Z from a reduced scheme to a
separated S-scheme agreeing on a dense open subset of U are the same.
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Note that this generalizes the easy direction of the valuative criterion of separatedness
(which is the special case where U is Spec of a discrete valuation ring — which consists of
two points — and the dense open set is the generic point).

It is useful to see how this breaks down when we give up reducedness of the base or
separatedness of the target. For the first, consider the two maps Spec k[x, y]/(x2, xy) →
Spec k[t], where we take f1 given by t 7→ y and f2 given by t 7→ y + x; f1 and f2 agree on
the distinguished open set D(y). (A picture helps here!) For the second, consider the two
maps from Spec k[t] to the line with the doubled origin, one of which maps to the “upper
half”, and one of which maps to the “lower half”. these to morphisms agree on the dense
open set D(f).

Proof.

V

cl. imm.
��

// Y

∆
��

U
(f1,f2)

// Y × Y

We have a closed subscheme of U containing the generic point. It must be all of U. �

Consequence 1. Hence (as X is reduced and Y is separated) if we have two morphisms
from open subsets of X to Y, say f : U → Y and g : V → Y, and they agree on a dense open
subset Z ⊂ U ∩ V , then they necessarily agree on U ∩ V .

Consequence 2. Also: a rational map has a largest domain of definition on which f : U 99K Y

is a morphism, which is the union of all the domains of definition.

In particular, a rational function from a reduced scheme has a largest domain of definition.

We define the graph of a rational map f : X 99K Y as follows: let (U, f ′) be any represen-
tative of this rational map (so f ′ : U → Y is a morphism). Let Γf be the scheme-theoretic
closure of Γf′ ↪→ U×Y ↪→ X×Y, where the first map is a closed immersion, and the second
is an open immersion. Exercise. Show that this is independent of the choice of U.

Here is a handy diagram involving the graph of a rational map:

Γ
�

� // X × Y

||xx
xx

xx
xx

x

""EE
EE

EE
EE

E

X

OO�
�

�

Y

(that “up arrow” should be dashed).

We now prove a Proposition promised earlier.

3.4. Proposition. — Suppose X, Y are irreducible varieties, and we are given f# : FF(Y) ↪→ FF(Y).
Then there exists a dominant rational map f : X 99K Y inducing f#.
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Proof. By replacing Y with an affine open set, we may assume Y is affine, say Y =
Spec k[x1, . . . , xn]/(f1, . . . , fr). Then we have x1, . . . , xn ∈ K(X). Let U be an open sub-
set of the domains of definition of these rational functions. Then we get a morphism
U → An

k. But this morphism factors through Y ⊂ An, as x1, . . . , xn satisfy all the relations
f1, . . . , fr. �

3.5. Exercise. Let K be a finitely generated field extension of transcendence degree m over
k. Show there exists an irreducible k-variety W with function field K. (Hint: let x1, . . . ,
xn be generators for K over k. Consider the map Spec K → Spec k[t1, . . . , tn] given by the
ring map ti 7→ xi. Take the scheme-theoretic closure of the image.)

3.6. Proposition. — Suppose X and Y are integral and separated (our standard hypotheses from
last day). Then X and Y are birational if and only if there is a dense=non-empty open subscheme
U of X and a dense=non-empty open subscheme V of Y such that U ∼= Y.

This gives you a good idea of how to think of birational maps.

3.7. Exercise. Prove this. (Feel free to consult Iitaka or Hartshorne (Corollary I.4.5).)

4. EXAMPLES OF RATIONAL MAPS

We now give a bunch of examples Here are some examples of rational maps, and bira-
tional maps. A recurring theme is that domains of definition of rational maps to projective
schemes extend over nonsingular codimension one points. We’ll make this precise when
we discuss curves shortly.

(A picture is helpful here.) The first example is how you find a formula for Pythagorean
triples. Suppose you are looking for rational points on the circle C given by x2 + y2 = 1.
One rational point is p = (1, 0). If q is another rational point, then pq is a line of rational
(non-infinite) slope. This gives a rational map from the conic to A1. Conversely, given a
line of slope m through p, where m is rational, we can recover q as follows: y = m(x−1),
x2 + y2 = 1. We substitute the first equation into the second, to get a quadratic equation
in x. We know that we will have a solution x = 1 (because the line meets the circle at
(x, y) = (1, 0)), so we expect to be able to factor this out, and find the other factor. This
indeed works:

x2 + (m(x − 1))2 = 1

(m2 + 1)x2 + (−2)x + (m2 − 1) = 0

(x − 1)((m2 + 1)x − (m2 − 1)) = 0

The other solution is x = (m2 − 1)/(m2 + 1), which gives y = 2m/(m2 + 1). Thus we
get a birational map between the conic C and A1 with coordinate m, given by f : (x, y) 7→
y/(x − 1) (which is defined for x 6= 1), and with inverse rational map given by m 7→
((m2 − 1)/(m2 + 1), 2m/(m2 + 1)) (which is defined away from m2 + 1 = 0).
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We can extend this to a rational map C 99K P1 via the inclusion A1 → P1. Then f is
given by (x, y) 7→ [y; x − 1]. (Remember that we give maps to projective space by giving
sections of line bundles — in this case, we are using the structure sheaf.) We then have
an interesting question: what is the domain of definition of f? It appears to be defined
everywhere except for where y = x − 1 = 0, i.e. everywhere but p. But in fact it can be
extended over p! Note that (x, y) 7→ [x + 1; −y] (where (x, y) 6= (−1, y)) agrees with f on
their common domains of definition, as [x + 1; −y] = [y; x − 1]. Hence this rational map
can be extended farther than we at first thought. This will be a special case of a result
we’ll see later today.

(For the curious: we are working with schemes over Q. But this works for any scheme
over a field of characteristic not 2. What goes wrong in characteristic 2?)

4.1. Exercise. Use the above to find a “formula” for all Pythagorean triples.

4.2. Exercise. Show that the conic x2 + y2 = z2 in P2
k is isomorphic to P1

k for any field k of
characteristic not 2. (Presumably this is true for any ring in which 2 is invertible too...)

In fact, any conic in P2
k with a k-valued point (i.e. a point with residue field k) is iso-

morphic to P1
k. (This hypothesis is certainly necessary, as P1

k certainly has k-valued points.
x2 + y2 + z2 = 0 over k = R gives an example of a conic that is not isomorphic to P1

k.)

4.3. Exercise. Find all rational solutions to y2 = x3 + x2, by finding a birational map to A1,
mimicking what worked with the conic.

You will obtain a rational map to P1 that is not defined over the node x = y = 0, and
can’t be extended over this codimension 1 set. This is an example of the limits of our
future result showing how to extend rational maps to projective space over codimension
1 sets: the codimension 1 sets have to be nonsingular. More on this soon!

4.4. Exercise. Use something similar to find a birational map from the quadric Q =

{x2 + y2 = w2 + z2} to P2. Use this to find all rational points on Q. (This illustrates a
good way of solving Diophantine equations. You will find a dense open subset of Q that
is isomorphic to a dense open subset of P2, where you can easily find all the rational
points. There will be a closed subset of Q where the rational map is not defined, or not an
isomorphism, but you can deal with this subset in an ad hoc fashion.)

4.5. Exercise (a first view of a blow-up). Let k be an algebraically closed field. (We make this
hypothesis in order to not need any fancy facts on nonsingularity.) Consider the rational
map A2

k 99K P1
k given by (x, y) 7→ [x; y]. I think you have shown earlier that this rational

map cannot be extended over the origin. Consider the graph of the birational map, which
we denote Bl(0,0) A2

k. It is a subscheme of A2
k × P1

k. Show that if the coordinates on A2

are x, y, and the coordinates on P1 are u, v, this subscheme is cut out in A2 × P1 by the
single equation xv = yu. Show that Bl(0,0) A2

k is nonsingular. Describe the fiber of the
morphism Bl(0,0) A2

k → P1
k over each closed point of P1

k. Describe the fiber of the morphism

6



Bl(0,0) A2
k → A2

k. Show that the fiber over (0, 0) is an effective Cartier divisor. It is called
the exceptional divisor.

4.6. Exercise (the Cremona transformation, a useful classical construction). Consider the
rational map P2

99K P2, given by [x; y; z] → [1/x; 1/y; 1/z]. What is the the domain of
definition? (It is bigger than the locus where xyz 6= 0!) You will observe that you can
extend it over codimension 1 sets. This will again foreshadow a result we will soon prove.

E-mail address: vakil@math.stanford.edu

7



FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 28

RAVI VAKIL

CONTENTS

1. Curves 1

Last day: More on properness. Rational maps.

Today: Curves.

(I also discussed rational maps a touch more, but I’ve included that in the class 27 notes
for the sake of continuity.)

1. CURVES

Let’s now use our technology to study something explicit! For our discussion here,
we will temporarily define a curve to be an integral variety over k of dimension 1. (In
particular, curves are reduced, irreducible, separated, and finite type over k.)

I gave an incomplete proof to the following proposition. Because I don’t think I’ll use
it, I haven’t tried to patch it. But if there is interest, I’ll include the proof with the hole, in
case one of you can figure out how to make it work. (We showed that each closed point
gives a discrete valuation, and we showed that each discrete valuation gives a morphism
from the Spec corresponding discrete valuation ring to the curve, but we didn’t show that
it was the local ring of the corresponding closed point. I would like to do this without
invoking any algebra that we haven’t yet proved.)

1.1. Proposition. — Suppose C is a projective nonsingular curve. Then each closed point of C

yields a discrete valuation ring, and hence a discrete valuation on FF(C). This gives a bijection
from closed points of C and discrete valuations on FF(C).

Thus a projective nonsingular curve is a convenient way of seeing all the discrete valu-
ations at once, in a nice geometric package.

I had wanted to ask you the following exercise (for those with arithmetic proclivities),
but I won’t now: Suppose A is the ring of integers in a number field (i.e. the integral

Date: Thursday, February 2, 2006.
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closure of Z in a finite field extension K/Q — K = FF(A)). Show that there is a natural
bijection between discrete valuations on K are in bijection with the maximal ideals of A.

1.2. Key Proposition. — Suppose C is a dimension 1 finite type k-scheme, and p is a nonsingular
point of it. Suppose Y is a projective k-scheme. Then any morphism C−p → Y extends to C → Y.

Note: if such an extension exists, then it is unique: The non-reduced locus of C is a
closed subset (we checked this earlier for any Noetherian scheme), not including p, so
by replacing C by an open neighborhood of p that is reduced, we can use our recently-
proved theorem that maps from reduced schemes to separated schemes are determined
by their behavior on a dense open set (Important Theorem 3.3 in last day’s notes).

I’d like to give two proofs, which are enlightening in different ways.

Proof 1. By restricting to an affine neighborhood of C, we can reduce to the case where C

is affine.

We next reduce to the case where Y = Pn
k . Here is how. Choose a closed immersion

Y → Pn
k . If the result holds for Pn, and we have a morphism C → Pn with C − p mapping

to Y, then C must map to Y as well. Reason: we can reduce to the case where the source
is an affine open subset, and the target is An

k ⊂ Pn
k (and hence affine). Then the functions

vanishing on Y ∩An
k pull back to functions that vanish at the generic point of C and hence

vanish everywhere on C, i.e. C maps to Y.

Choose a uniformizer t ∈ m − m2 in the local ring. By discarding the points of the
vanishing set V(t) aside from p, and taking an affine open subset of p in the remainder
we reduce to the case where t cuts out precisely m (i.e. m = (y)). Choose a dense open
subset U of C − p where the pullback of O(1) is trivial. Take an affine open neighborhood
Spec A of p in U ∪ {p}. Then the map Spec A − p → Pn corresponds to n + 1 functions,
say f0, . . . , fn ∈ Am, not all zero. Let m be the smallest valuation of all the fi. Then
[t−mf0; . . . ; t

−mfn] has all entries in A, and not all in the maximal ideal, and thus is defined
at p as well. �

Proof 2. We extend the map Spec FF(C) → Y to SpecOC,p → Y as follows. Note that OC,p

is a discrete valuation ring. We show first that there is a morphism SpecOC,p → Pn. The
rational map can be described as [a0; a1; · · · ; an] where ai ∈ OC,p. Let m be the minimum
valuation of the ai, and let t be a uniformizer of OC,p (an element of valuation 1). Then
[t−ma0; t

−ma1; . . . t
−man] is another description of the morphism Spec FF(OC,p) → Pn, and

each of the entries lie in OC,p, and not all entries lie in m (as one of the entries has valuation
0). This same expression gives a morphism SpecOC,p → Pn.

Our intuition now is that we want to glue the maps SpecOC,p → Y (which we picture
as a map from a germ of a curve) and C − p → Y (which we picture as the rest of the
curve). Let Spec R ⊂ Y be an affine open subset of Y containing the image of SpecOC,p.
Let Spec A ⊂ C be an affine open of C containing p, and such that the image of Spec A− p

in Y lies in Spec R, and such that p is cut out scheme-theoretically by a single equation (i.e.
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there is an element t ∈ A such that (t) is the maximal ideal corresponding to p. Then R and
A are domains, and we have two maps R → A(t) (corresponding to SpecOC,p → Spec R)
and R → At (corresponding to Spec A − p → Spec R) that agree “at the generic point”, i.e.
that give the same map R → FF(A). But At ∩ A(t) = A in FF(A) (e.g. by Hartogs’ theorem
— elements of the fraction field of A that don’t have any poles away from t, nor at t, must
lie in A), so we indeed have a map R → A agreeing with both morphisms. �

1.3. Exercise (Useful practice!). Suppose X is a Noetherian k-scheme, and Z is an irreducible
codimension 1 subvariety whose generic point is a nonsingular point of X (so the local
ring OX,Z is a discrete valuation ring). Suppose X 99K Y is a rational map to a projective
k-scheme. Show that the domain of definition of the rational map includes a dense open
subset of Z. In other words, rational maps from Noetherian k-schemes to projective k-
schemes can be extended over nonsingular codimension 1 sets. We saw this principle in
action with the Cremona transformation, in Class 27 Exercise 4.6. (By the easy direction
of the valuative criterion of separatedness, or the theorem of uniqueness of extensions of
maps from reduced schemes to separated schemes — Theorem 3.3 of Class 27 — this map
is unique.)

1.4. Theorem. — If C is a nonsingular curve, then there is some projective nonsingular curve C ′

and an open immersion C ↪→ C ′.

This proof has a bit of a different flavor than proofs we’ve seen before. We’ll use make
particular use of the fact that one-dimensional Noetherian schemes have a boring topol-
ogy.

Proof. Given a nonsingular curve C, take a non-empty=dense affine open set, and take
any non-constant function f on that affine open set to get a rational map C 99K P1 given
by [1; f]. As a dense open set of a dimension 1 scheme consists of everything but a finite
number of points, by Proposition 1.2, this extends to a morphism C → P1.

We now take the normalization of P1 in the function field FF(C) of C (a finite extension
of FF(P1)), to obtain C ′

→ P1. Now C ′ is normal, hence nonsingular (as nonsingular =
normal in dimension 1). By the finiteness of integral closure, C ′

→ P1 is a finite mor-
phism. Moreover, finite morphisms are projective, so by considering the composition of
projective morphisms C ′

→ P1
→ Spec k, we see that C ′ is projective over k. Thus we

have an isomorphism FF(C) → FF(C ′), hence a rational map C 99K C ′, which extends to a
morphism C → C ′ by Key Proposition 1.2.

Finally, I claim that C → C ′ is an open immersion. If we can prove this, then we are
done. I note first that this is an injection of sets:

• the generic point goes to the generic point
• the closed points of C correspond to distinct valuations on FF(C) (as C is separated,

by the easy direction of the valuative criterion of separatedness)
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Thus as sets, C is C ′ minus a finite number of points. As the topology on C and C ′ is
the “cofinite topology” (i.e. the open sets include the empty set, plus everything minus
a finite number of closed points), the map C → C ′ of topological spaces expresses C as
a homeomorphism of C onto its image im(C). Let f : C → im(C) be this morphism of
schemes. Then the morphism Oim(C) → f∗OC can be interpreted as Oim(C) → OC (where
we are identifying C and im(C) via the homeomorphism f). This morphism of sheaves
is an isomorphism of stalks at all points p ∈ im(C) (it is the isomorphism the discrete
valuation ring corresponding to p ∈ C ′), and is hence an isomorphism. Thus C → im(C)

is an isomorphism of schemes, and thus C → C ′ is an open immersion. �

We now come to the big theorem of today (although the Key Proposition 1.2 above was
also pretty big).

1.5. Theorem. — The following categories are equivalent.

(i) nonsingular projective curves, and surjective morphisms.
(ii) nonsingular projective curves, and dominant morphisms.

(iii) nonsingular projective curves, and dominant rational maps
(iv) quasiprojective reduced curves, and dominant rational maps
(v) function fields of dimension 1 over k, and k-homomorphisms.

(All morphisms and maps are assumed to be k-morphisms and k-rational maps, i.e.
they are all over k. Remember that today we are working in the category of k-schemes.)

This has a lot of implications. For example, each quasiprojective reduced curve is iso-
morphic to precisely one projective nonsingular curve.

This leads to a motivating question that I mentioned informally last day (and that isn’t
in the notes). Suppose k is algebraically closed (such as C). Is it true that all nonsingu-
lar projective curves are isomorphic to P1

k? Equivalently, are all quasiprojective reduced
curves birational to A1

k? Equivalently, are all transcendence degree 1 extensions of k gen-
erated (as a field) by a single element? The answer (as most of you know) is no, but we
can’t yet see that.

1.6. Exercise. Show that all nonsingular proper curves are projective.

(We may eventually see that all reduced proper curves over k are projective, but I’m
not sure; this will use the Riemann-Roch theorem, and I may just prove it for projective
curves.)

Before we get to the proof, I want to mention a sticky point that came up in class. If
k = R, then we are allowing curves such as P1

C
that “we don’t want”. One way of making

this precise is noting that they are not geometrically irreducible (as C(t)⊗R
C ∼= C(t)⊕C(t)).

Another way is to note that this function field K does not satisfy k ∩ K = k in K. If this
bothers you, then add it to each of the 5 categories. (For example, in (i)–(iii), we consider
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only nonsingular projective curves whose function field K satisfies k ∩ K = k in K.) If this
doesn’t bother you, please ignore this paragraph!

Proof. Any surjective morphism is a dominant morphism, and any dominant morphism
is a dominant rational map, and each nonsingular projective curve is a quasiprojective
curve, so we’ve shown (i) → (ii) → (iii) → (iv). To get from (iv) to (i), we first note that
the nonsingular points on a quasiprojective reduced curve are dense. (One method, sug-
gested by Joe: we know that normalization is an isomorphism away from a closed subset.)
Given a dominant rational map between quasiprojective reduced curves C → C ′, we get
a dominant rational map between their normalizations, which in turn gives a dominant
rational map between their projective models D 99K D ′. The the dominant rational map
is necessarily a morphism by Proposition 1.2, and then this morphism is necessarily pro-
jective and hence closed, and hence surjective (as the image contains the generic point of
D ′, and hence its closure). Thus we have established (iv) → (i).

It remains to connect (i). Each dominant rational map of quasiprojective reduced curves
indeed yields a map of function fields of dimension 1 (their fraction fields). Each function
field of dimension 1 yields a reduced affine (hence quasiprojective) curve over k, and each
map of two such yields a dominant rational map of the curves. �

1.7. Degree of a morphism between projective nonsingular curves.

We conclude with a useful fact: Any non-constant morphism from one projective non-
singular curve to another has a well-behaved degree, in a sense that we will now make
precise. We will also show that any non-constant finite morphism from one nonsingular
curve to another has a well-behaved degree in the same sense.

Suppose f : C → C ′ is a surjective (or equivalently, dominant) map of nonsingular
projective curves.

It is a finite morphism. Here is why. (If we had already proved that quasifinite projec-
tive or proper morphisms with finite fibers were finite, we would know this. Once we do
know this, the contents of this section would extend to the case where C is not necessarily
non-singular.) Let C ′′ be the normalization of C ′ in the function field of C. Then we have
an isomorphism FF(C) ∼= FF(C ′′) which leads to birational maps C oo //___ C ′′ which ex-
tend to morphisms as both C and C ′′ are nonsingular and projective. Thus this yields an
isomorphism of C and C ′′. But C ′′

→ C is a finite morphism by the finiteness of integral
closure.

We can then use the following proposition, which applies in more general situations.

1.8. Proposition. — Suppose that π : C → C ′ is a surjective finite morphism, where C is an
integral curve, and C ′ is an integral nonsingular curve. Then π∗OC is locally free of finite rank.

As π is finite, π∗OC is a finite type sheaf on O ′

C. In case you care, the hypothesis “inte-
gral” on C ′ is redundant.
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Before proving the proposition. I want to remind you what this means. Suppose d is the
rank of this allegedly locally free sheaf. Then the fiber over any point of C with residue
field K is the Spec of an algebra of dimension d over K. This means that the number of
points in the fiber, counted with appropriate multiplicity, is always d.

As a motivating example, consider the map Q[y] → Q[x] given by x 7→ y2. (We’ve
seen this example before.) I picture this as the projection of the parabola x = y2 to the
x-axis. (i) The fiber over x = 1 is Q[y]/(y2 − 1), so we get 2 points. (ii) The fiber over
x = 0 is Q[y]/(y2) — we get one point, with multiplicity 2, arising because of the nonre-
ducedness. (iii) The fiber over x = −1 is Q[y]/(y2 + 1) ∼= Q[i] — we get one point, with
multiplicity 2, arising because of the field extension. (iv) Finally, the fiber over the generic
point Spec Q(x) is Spec Q(y), which is one point, with multiplicity 2, arising again be-
cause of the field extension (as Q(y)/Q(x) is a degree 2 extension). We thus see three sorts
of behaviors (as (iii) and (iv) are the same behavior). Note that even if you only work
with algebraically closed fields, you will still be forced to this third type of behavior, be-
cause residue fields at generic points tend not to be algebraically closed (witness case (iv)
above).

Note that we need C ′ to be nonsingular for this to be true. (I gave a picture of the
normalization of a nodal curve as an example. A picture would help here.)

We will see the proof next day.
E-mail address: vakil@math.stanford.edu
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RAVI VAKIL

CONTENTS

1. Scheme-theoretic closure, and scheme-theoretic image 1
2. Curves 1
3. Degree of invertible sheaves on curves 3
4. Cech cohomology of quasicoherent sheaves 4
5. Proving the things you need to know 7

Last day: One last bit of rational maps. Curves.

Today: A bit more curves. Introduction to cohomology.

1. SCHEME-THEORETIC CLOSURE, AND SCHEME-THEORETIC IMAGE

I discussed the scheme-theoretic closure of a locally closed scheme, and more generally,
the scheme-theoretic image of a morphism. I’ve moved this discussion into the class 27
notes.

2. CURVES

Last day we proved a couple of important theorems:

2.1. Key Proposition. — Suppose C is a dimension 1 finite type k-scheme, and p is a nonsingular
point of it. Suppose Y is a projective k-scheme. Then any morphism C−p → Y extends to C → Y.

2.2. Theorem. — If C is a nonsingular curve, then there is some projective nonsingular curve C ′

and an open immersion C ↪→ C ′.

2.3. Theorem. — The following categories are equivalent.

Date: Tuesday, February 7, 2006. Updated June 25, 2007. c© 2005, 2006, 2007 by Ravi Vakil.
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(i) nonsingular projective curves, and surjective morphisms.
(ii) nonsingular projective curves, and dominant morphisms.

(iii) nonsingular projective curves, and dominant rational maps
(iv) quasiprojective reduced curves, and dominant rational maps
(v) fields of transcendence dimension 1 over k, and k-homomorphisms.

We then discussed the degree of a morphism between projective nonsingular curves.
In particular, we are in the midst of showing that any non-constant morphism from one
projective nonsingular curve to another has a well-behaved degree. Suppose f : C → C ′ is
a surjective (or equivalently, dominant) map of nonsingular projective curves. We showed
that f is a finite morphism, by showing that f is the normalization of C ′ in the function
field of C; hence the result follows by finiteness of integral closure.

2.4. Proposition. — Suppose that π : C → C ′ is a surjective finite morphism, where C is an
integral curve, and C ′ is an integral nonsingular curve. Then π∗OC is locally free of finite rank.

All we will really need is that C is reduced of pure dimension 1.

We are about to prove this.

Let’s discuss again what this means. (I largely said this last day.) Suppose d is the rank
of this allegedly locally free sheaf. Then the fiber over any point of C with residue field K

is the Spec of an algebra of dimension d over K. This means that the number of points in
the fiber, counted with appropriate multiplicity, is always d.

Proof. (For experts: we will later see that what matters here is that the morphism is finite
and flat. But we don’t yet know what flat is.)

The question is local on the target, so we may assume that C ′ is affine. Note that π∗OC

is torsion-free (as Γ(C,OC) is an integral domain). Our plan is as follows: by an important
exercise from last quarter (Exercise 5.2 of class 15; problem 10 on problem set 7), if the
rank of the coherent sheaf π∗OC is constant, then (as C ′ is reduced) π∗OC is locally free.
We’ll show this by showing the rank at any closed point of C ′ is the same as the rank at
the generic point.

The notion of “rank at a point” behaves well under base change, so we base change
to the discrete valuation ring OC ′,p, where p is some closed point of C ′. Then π∗OC is
a finitely generated module over a discrete valuation ring which is torsion-free. By the
classification of finitely generated modules over a principal ideal domain, any finitely
generate module over a principal ideal domain A is a direct sum of modules of the form
A/(d) for various d ∈ A. But if A is a discrete valuation ring, and A/(d) is torsion-free,
then A/(d) is necessarily A (as for example all ideals of A are of the form 0 or a power of
the maximal ideal). Thus we are done. �

Remark. If we are working with complex curves, this notion of degree is the same as the
notion of the topological degree.
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3. DEGREE OF INVERTIBLE SHEAVES ON CURVES

Suppose C is a projective curve, and L is an invertible sheaf. We will define degL.

Let s be a non-zero rational section of L. For any p ∈ C, recall the valuation of s

at p (vp(s) ∈ Z). (Pick any local section t of L not vanishing at p. Then s/t ∈ FF(C).
vp(s) := vp(s/t). We can show that this is well-defined.)

Define deg(L, s) (where s is a non-zero rational section of L) to be the number of zeros
minus the number of poles, counted with appropriate multiplicity. (In other words, each
point contributes the valuation at that point times the degree of the field extension.) We’ll
show that this is independent of s. (Note that we need the projective hypothesis: the
sections x and 1 of the structure sheaf on A

1 have different degrees.)

Notice that deg(L, s) is additive under products: deg(L, s)+deg(M, t) = deg(L⊗M, s⊗

t). Thus to show that deg(L, s) = deg(L, t), we need to show that deg(OC, s/t) = 0. Hence
it suffices to show that deg(OC, u) = 0 for a non-zero rational function u on C. Then
u gives a rational map C 99K P

1. By our recent work (Proposition 2.1 above), this can
be extended to a morphism C → P

1. The preimage of 0 is the number of 0’s, and the
preimage of ∞ is the number of ∞’s. But these are the same by our previous discussion
of degree of a morphism! Finally, suppose p 7→ 0. I claim that the valuation of u at p

times the degree of the field extension is precisely the contribution of p to u−1(0). (A
similar computation for ∞ will complete the proof of the desired result.) This is because
the contribution of p to u−1(0) is precisely

dimk OC,p/(u) = dimk OC,p/mvp(u) = vp(u) dimk OC,p/m.

�

We can define the degree of an invertible sheaf L on an integral singular projective curve
C as follows: if ν : C̃ → C be the normalization, let degC L := degC̃ ν∗L. Notice that if s

is a meromorphic section that has neither zeros nor poles at the singular points of C, then
degC L is still the number of zeros minus the number of poles (suitably counted), because
the zeros and poles of ν∗L are just the same as those of L.

3.1. Exercise. Suppose f : C → C ′ is a degree d morphism of integral projective nonsin-
gular curves, and L is an invertible sheaf on C ′. Show that degC f∗L = d degC ′ L.

3.2. Degree of a Cartier divisor on a curve.

I said the following in class 30. (I’ve repeated this in the class 30 notes.)

Suppose D is an effective Cartier divisor on a projective curve, or a Cartier divisor on a
projective nonsingular curve (over a field k). (I should really say: suppose D is a Cartier
divisor on a projective curve, but I don’t think I defined Cartier divisors in that general-
ity.) Then define the degree of D (denoted deg D) to be the degree of the corresponding
invertible sheaf.
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Exercise. If D is an effective Cartier divisor on a projective nonsingular curve, say D =∑
nipi, prove that deg D =

∑
ni deg pi, where deg pi is the degree of the field extension

of the residue field at pi over k.

4. CECH COHOMOLOGY OF QUASICOHERENT SHEAVES

One idea behind the cohomology of quasicoherent sheaves is as follows. If 0 → F →
G → H → 0 is a short exact sequence of sheaves on X, we know that

0 → F(X) → G(X) → H(X).

In other words, Γ(X, ·) is a left-exact functor. We dream that this is something called
H0, and that this sequence continues off to the right, giving a long exact sequence in
cohomology. (In general, whenever we see a left-exact or right-exact functor, we should
hope for this, and in most good cases our dreams are fulfilled. The machinery behind this
is sometimes called derived functor cohomology, which we may discuss in the third quarter.)

We’ll show that these cohomology groups exist. Before defining them explicitly, we
first describe their important properties.

Suppose X is an R-scheme. Assume throughout that X is separated and quasicompact.
Then for each quasicoherent sheaf F on X, we’ll define R-modules Hi(X,F). (In partic-
ular, if R = k, they are k-vector spaces.) First, H0(X,F) = Γ(X,F) . Each Hi will be a
contravariant functor in the space X, and a covariant functor in the sheaf F . The functor
Hi behaves well under direct sums: Hi(X,⊕jFj) = ⊕jH

i(X,Fj) . (We will need infinite
sums, not just finite sums.) If 0 → F → G → H → 0 is a short exact sequence of quasico-
herent sheaves on X, then we have a long exact sequence

0 → H0(X,F) → H0(X,G) → H0(X,H)

→ H1(X,F) → H1(X,G) → H1(X,H) → · · · .

(The maps H)(X, ?) → Hi(X, ??) will be those coming from covariance; the connecting ho-
momorphisms Hi(x,H) → Hi+1(X,F) will have to be defined.) We’ll see that if X can be
covered by n affines, then Hi(X,F) = 0 for i ≥ n for all F , i. (In particular, all higher
quasicoherent cohomology groups on affine schemes vanish.) If X ↪→ Y is a closed immer-
sion, and F is a quasicoherent sheaf on X, then Hi(X,F) = Hi(Y, f∗F) . (We’ll care about
this particularly in the case when X ⊂ Y = P

N
R , which will let us reduce calculations on

arbitrary projective R-schemes to calculations on P
n
R .)

We will also identify the cohomology of all the invertible sheaves on P
n
R :

4.1. Proposition. —

• H0(Pn
R,OPn

R
(m)) is a free R-module of rank

(

n+m

n

)

if i = 0 and m ≥ 0, and 0 otherwise.
• Hn(Pn

R,OP
n
R
(m)) is a free R-module of rank

(

−m−1

−n−m−1

)

if m ≤ −n − 1, and 0 otherwise.
• Hi(Pn

R,OP
n
R
(m)) = 0 if 0 < i < n.
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It is more helpful to say the following imprecise statement: H0(Pn
R,OP

n
R
(m)) should be

interpreted as the homogeneous degree m polynomials in x0, . . . , xn (with R-coefficients),
and Hn(Pn

R,OP
n
R
(m)) should be interpreted as the homogeneous degree m Laurent poly-

nomials in x0, . . . , xn, where in each monomial, each xi appears with degree at most −1.

We’ll prove this next day.

Here are some features of this Proposition that I wish to point out, that will be the first
appearances of things that we’ll prove later.

• The cohomology of these bundles vanish above the dimension of the space if R = k;
we’ll generalize this for Spec R, and even more, in before long.

• These cohomology groups are always finitely-generated R modules.
• The top cohomology group vanishes for m > −n − 1. (This is a first appearance of

“Kodaira vanishing”.)
• The top cohomology group is “1-dimensional” for m = −n− 1 if R = k. This is the

first appearance of a dualizing sheaf.
• We have a natural duality Hi(X,O(m))×Hn−i(X,O(−n−1−m)) → Hn(X,O(−n−

1)). This is the first appearance of Serre duality.

I’d like to use all these properties to prove things, so you’ll see how handy they are.
We’ll worry later about defining cohomology, and proving these properties.

When we discussed global sections, we worked hard to show that for any coherent
sheaf F on P

n
R we could find a surjection O(m)⊕j → F , which yields the exact sequence

(1) 0 → G → O(m)⊕j → F → 0

for some coherent sheaf G. We can use this to prove the following.

4.2. Theorem. — (i) For any coherent sheaf F on a projective R-scheme where R is Noether-
ian, hi(X,F) is a finitely generated R-module. (ii) (Serre vanishing) Furthermore, for m � 0,
Hi(X,F(m)) = 0 for all i, even without Noetherian hypotheses.

Proof. Because cohomology of a closed scheme can be computed on the ambient space,
we may reduce to the case X = P

n
R.
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(i) Consider the long exact sequence:

0 // H0(Pn
R,G) // H0(Pn

R,O(m)⊕j) // H0(Pn
R,F) //

H1(Pn
R,G) // H1(Pn

R,O(m)⊕j) // H1(Pn
R,F) // · · ·

· · · // Hn−1(Pn
R,G) // Hn−1(Pn

R,O(m)⊕j) // Hn−1(Pn
R,F) //

Hn(Pn
R,G) // Hn(Pn

R,O(m)⊕j) // Hn(Pn
R,F) // 0

The exact sequence ends here because P
n
R is covered by n+1 affines. Then Hn(Pn

R,O(m)⊕j)

is finitely generated by Proposition 4.1, hence Hn(Pn
R,F) is finitely generated for all coher-

ent sheaves F . Hence in particular, Hn(Pn
R,G) is finitely generated. As Hn−1(Pn

R,O(m)⊕j)

is finitely generated, and Hn(Pn
R,G) is too, we have that Hn−1(Pn

R,F) is finitely generated
for all coherent sheaves F . We continue inductively downwards.

(ii) Twist (4.1) by O(N) for N � 0. Then Hn(Pn
R,O(m + N)⊕j) = 0, so Hn(Pn

R,F(N)) =

0. Translation: for any coherent sheaf, its top cohomology vanishes once you twist by
O(N) for N sufficiently large. Hence this is true for G as well. Hence from the long
exact sequence, Hn−1(Pn

R,F(N)) = 0 for N � 0. As in (i), we induct downwards, until
we get that H1(Pn

R,F(N)) = 0. (The induction proceeds no further, as it is not true that
H0(Pn

R,O(m + N)⊕j) = 0 for large N — quite the opposite. �

Exercise for those who like working with non-Noetherian rings: Prove part (i) in the above
result without the Noetherian hypotheses, assuming only that R is a coherent R-module
(it is “coherent over itself”). (Hint: induct downwards as before. The order is as follows:
Hn(Pn

R,F) finitely generated, Hn(Pn
R,G) finitely generated, Hn(Pn

R,F) coherent, Hn(Pn
R,G)

coherent, Hn−1(Pn
R,F) finitely generated, Hn−1(Pn

R,G) finitely generated, etc.)

In particular, we have proved the following, that we would have cared about even
before we knew about cohomology.

4.3. Corollary. — Any projective k-scheme has a finite-dimensional space of global sections. More
generally, if F is a coherent sheaf on a projective R-scheme, then h0(X,F) is a finitely generated
R-module.

This is true more generally for proper k-schemes, not just projective k-schemes, but I
won’t give the argument here.

Here is another a priori interesting consequence:

4.4. Corollary. — If 0 → F → G → H → 0 is an exact sequence of coherent sheaves on projective
X with F coherent, then for n � 0, 0 → H0(X,F(n)) → H0(X,G(n)) → H0(X,H(n)) → 0 is
also exact.
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(Proof: for n � 0, H1(X,F(n)) = 0.)

This result can also be shown directly, without the use of cohomology.

5. PROVING THE THINGS YOU NEED TO KNOW

As you read this, you should go back and check off all the facts, to make sure that I’ve
shown all that I’ve promised.

5.1. Cech cohomology. Works nicely here. In general: take finer and finer covers. Here
we take a single cover.

Suppose X is quasicompact and separated, e.g. X is quasiprojective over A. In partic-
ular, X may be covered by a finite number of affine open sets, and the intersection of
any two affine open sets is also an affine open set; these are the properties we will use.
Suppose F is a quasicoherent sheaf, and U = {Ui}

n
i=1 is a finite set of affine open sets of

X whose union is U. For I ⊂ {1, . . . , n} define Ui = ∩i∈IUi. It is affine by the separated
hypothesis. Define Hi

U(U,F) to be the ith cohomology group of the complex
(2) 0 →

M

|I| = 1

I ⊂ {1, . . . , n}

F(UI) → · · · →
M

|I| = i

I ⊂ {1, . . . , n}

F(UI) →
M

|I| = i + 1

I ⊂ {1, . . . , n}

F(UI) → · · · .

Note that if X is an R-scheme, then Hi
U(X,F) is an R-module. Also H0

U(X,F) = Γ(X,F).

5.2. Exercise. Suppose 0 → F1 → F2 → F3 → 0 is a short exact sequence of sheaves on a
topological space, and U is an open cover such that on any intersection the sections of F2

surject onto F3. Show that we get a long exact sequence of cohomology. (Note that this
applies in our case!)

I ended by stating the following result, which we will prove next day.

5.3. Theorem/Definition. — Recall that X is quasicompact and separated. Hi
U(U,F) is indepen-

dent of the choice of (finite) cover {Ui}. More precisely,

(*) for all k, for any two covers {Ui} ⊂ {Vi} of size at most k, the maps Hi
{Vi}

(X,F) →

Hi
{Ui}

(X,F) induced by the natural maps of complex (2) are isomorphisms.

Define the Cech cohomology group Hi(X,F) to be this group.

I needn’t have stated in terms of some k; I’ve stated it in this way so I can prove it by
induction.

(For experts: we’ll get natural quasiisomorphisms of Cech complexes for various U .)
E-mail address: vakil@math.stanford.edu
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degrees 7

Last day: More curves. Cohomology take 1.

Today: Cohomology continued. Hilbert functions and Hilbert polynomials.

1. LEFT-OVER: DEGREE OF A CARTIER DIVISOR ON A PROJECTIVE CURVE

As always, there is something small that I should have said last day. Suppose D is an
effective Cartier divisor on a projective curve, or a Cartier divisor on a projective non-
singular curve (over a field k). (I should really say: suppose D is a Cartier divisor on
a projective curve, but I don’t think I defined Cartier divisors in that generality.) Then
define the degree of D (denoted deg D) to be the degree of the corresponding invertible
sheaf.

Exercise. If D is an effective Cartier divisor on a projective nonsingular curve, say D =∑
nipi, prove that deg D =

∑
ni deg pi, where deg pi is the degree of the field extension

of the residue field at pi over k.

(This is also now in the class 29 notes, where it belongs.)

2. COHOMOLOGY CONTINUED

Last day, I gave you lots of facts that we wanted cohomology to satisfy. Suppose X is a
separated and quasicompact R-scheme. In particular, X can be covered by a finite number
of affine open sets, and the intersection of any two affine open sets is another affine open

Date: Thursday, February 9, 2006. Minor update March 8. c© 2005, 2006, 2007 by Ravi Vakil.
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set. We are going to define Hi(X,F) for any quasicoherent sheaf F on X, that satisfies the
following properties.

• H0(X,F) = Γ(X,F)

• Hi is a contravariant functor in X and a covariant functor in F .
• Hi(X,⊕jFj) = ⊕jH

i(X,Fj): cohomology commutes with arbitrary direct sums.
• long exact sequences
• Hi(Spec R,F) = 0.
• If X ↪→ Y is a closed immersion, and F is a quasicoherent sheaf on X, then Hi(X,F) =

Hi(Y, f∗F).
• Hi(Pn

R,OP
n
R
(r)) is something nice (we described it in a statement last day that we

will prove today)

Last day, we defined these cohomology groups given the additional data of an affine
open cover U ; I used the notation Hi

U
(X,F). We’ll start today by showing that this is

independent of U .

2.1. Theorem/Definition. — Recall that X is quasicompact and separated. Hi
U
(U,F) is indepen-

dent of the choice of (finite) cover {Ui}. More precisely,

(*) for all k, for any two covers {Ui} ⊂ {Vi} of size at most k, the maps Hi
{Vi}

(X,F) →

Hi
{Ui}

(X,F) induced by the natural maps of complex (1) are isomorphisms.

Define the Cech cohomology group Hi(X,F) to be this group.

(1) 0 →
M

|I| = 1

I ⊂ {1, . . . , n}

F(UI) → · · · →
M

|I| = i

I ⊂ {1, . . . , n}

F(UI) →
M

|I| = i + 1

I ⊂ {1, . . . , n}

F(UI) → · · · .

I needn’t have stated in terms of some k; I’ve stated it in this way so I can prove it by
induction.

(For experts: we’ll get natural quasiisomorphisms of Cech complexes for various U .)

Proof. We prove this by induction on k. The base case is trivial. We need only prove the
result for {Ui}

n
i=1 ⊂ {Ui}

n
i=0, where the case k = n is known. Consider the exact sequence
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of complexes

0

��

0

��

0

��

· · · //

L

|I| = i − 1

0 ∈ I ⊂ {0, . . . , n}

F(UI) //

��

L

|I| = i

0 ∈ I ⊂ {0, . . . , n}

F(UI) //

��

L

|I| = i + 1

0 ∈ I ⊂ {0, . . . , n}

F(UI) //

��

· · ·

· · · //

L

|I| = i − 1

I ⊂ {0, . . . , n}

F(UI) //

��

L

|I| = i

I ⊂ {0, . . . , n}

F(UI) //

��

L

|I| = i + 1

I ⊂ {0, . . . , n}

F(UI) //

��

· · ·

· · · //

L

|I| = i − 1

I ⊂ {1, . . . , n}

F(UI) //

��

L

|I| = i

I ⊂ {1, . . . , n}

F(UI) //

��

L

|I| = i + 1

I ⊂ {1, . . . , n}

F(UI) //

��

· · ·

0 0 0

We get a long exact sequence of cohomology from this. Thus by Exercise 5.2 of last day,
we wish to show that the top row is exact. But the ith cohomology of the top row is
precisely Hi

{Ui∩U0}i>0
(Ui,F) except at step 0, where we get 0 (because the complex starts

off 0 → F(U0) → ⊕n
j=1F(U0 ∩ Uj)). So we just need to show that higher Cech groups of

affine schemes are 0. Hence we are done by the following result. �

2.2. Theorem. — The higher Cech cohomology Hi
U
(X,F) of an affine R-scheme X vanishes (for

any affine cover U , i > 0, and quasicoherent F ).

Serre describes this as a partition of unity argument.

A spectral sequence argument can make quick work of this, but I’d like to avoid intro-
ducing spectral sequences until I have to.

Proof. We want to show that the “extended” complex (where you tack on global sections
to the front) has no cohomology, i.e. that

(2) 0 → F(X) → ⊕|I|=1F(UI) → ⊕|I|=2F(UI) → · · ·

is exact. We do this with a trick.
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Suppose first that some Ui (say U0) is X. Then the complex can be described as the
middle row of the following short exact sequence of complexes

0 // 0 //

��

⊕|I|=1,0∈IF(UI) //

��

⊕|I|=2,0∈IF(UI) //

��

· · ·

0 // F(X) //

��

⊕|I|=1F(UI) //

��

⊕|I|=2F(UI) //

��

· · ·

0 // F(X) // ⊕|I|=1,0/∈IF(UI) // ⊕|I|=2,0/∈IF(UI) // · · ·

The top row is the same as the bottom row, slid over by 1. The corresponding long exact
sequence of cohomology shows that the central row has vanishing cohomology. (Topo-
logical experts will recognize a mapping cone in the above construction.)

We next prove the general case by sleight of hand. Say X = Spec S. We wish to show
that the complex of R-modules (2) is exact. It is also a complex of S-modules, so we wish to
show that the complex of S-modules (2) is exact. To show that it is exact, it suffices to show
that for a cover of Spec S by distinguished opens D(fi) (1 ≤ i ≤ s) (i.e. (f1, . . . , fs) = 1 in
S) the complex is exact. (Translation: exactness of a sequence of sheaves may be checked
locally.) We choose a cover so that each D(fi) is contained in some Uj = Spec Rj. Consider
the complex localized at fi. As

Γ(Spec R,F)f = Γ(Spec(Rj)f,F)

(as this is one of the definitions of a quasicoherent sheaf), as Uj ∩ D(fi) = D(fi), we are in
the situation where one of the Ui’s is X, so we are done. �

2.3. Exercise. Suppose V ⊂ U are open subsets of X. Show that we have restriction mor-
phisms Hi(U,F) → Hi(V,F) (if U and V are quasicompact, and U hence V is separated).
Show that restrictions commute. Hence if X is a Noetherian space, Hi(,̇F) this is a con-
travariant functor from the category Top(X) to abelian groups. (For experts: this means
that it is a presheaf. But this is not a good way to think about it, as its sheafification is 0,
as it vanishes on the affine base.) The same argument will show more generally that for
any map f : X → Y, there exist natural maps Hi(X,F) → Hi(X, f∗F); I should have asked
this instead.

2.4. Exercise. Show that if F → G is a morphism of quasicoherent sheaves on separated
and quasicompact X then we have natural maps Hi(X,F) → Hi(X,G). Hence Hi(X, ·)
is a covariant functor from quasicoherent sheaves on X to abelian groups (or even R-
modules).

In particular, we get the following facts.

1. If X ↪→ Y is a closed subscheme then Hi(X,F) = Hi(Y, f∗F), as promised at start of
our discussion on cohomology.
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2. Also, if X can be covered by n affine open sets, then Hi(X,F) = 0 for all quasicoherent
F , and i ≥ n. In particular, Hi(Spec R,F) = 0 for i > 0.

3. Cohomology behaves well for arbitrary direct sums of quasicoherent sheaves.

2.5. Dimensional vanishing for projective k-schemes.

2.6. Theorem. — Suppose X is a projective k-scheme, and F is a quasicoherent sheaf on X. Then
Hi(X,F) = 0 for i > dim X.

In other words, cohomology vanishes above the dimension of X. We will later show
that this is true when X is a quasiprojective k-scheme.

Proof. Suppose X ↪→ P
N, and let n = dim X. We show that X may be covered by n affine

open sets. Long ago, we had an exercise saying that we could find n Cartier divisors on
P

N such that their complements U0, . . . , Un covered X. (We did this as follows. Lemma:
Suppose Y ↪→ P

N is a projective scheme. Then Y is Noetherian, and hence has a finite
number of components. We can find a hypersurface H containing none of their associated
points. Then H contains no component of Y, the dimension of H∩Y is strictly smaller than
Y, and if dim Y = 0, then H ∩ Y = ∅.) Then Ui is affine, so Ui ∩ X is affine, and thus we
have covered X with n affine open sets. �

Remark. We actually need n affine open sets to cover X, but I don’t see an easy way to
prove it. One way of proving it is by showing that the complement of an affine set is
always pure codimension 1.

3. COHOMOLOGY OF LINE BUNDLES ON PROJECTIVE SPACE

I’ll now pay off that last IOU.

3.1. Proposition. —

• H0(Pn
R,OP

n
R
(m)) is a free R-module of rank

(

n+m

n

)

if i = 0 and m ≥ 0, and 0 otherwise.
• Hn(Pn

R,OP
n
R
(m)) is a free R-module of rank

(

−m−1

−n−m−1

)

if m ≤ −n − 1, and 0 otherwise.
• Hi(Pn

R,OP
n
R
(m)) = 0 if 0 < i < n.

It is more helpful to say the following imprecise statement: H0(Pn
R,OP

n
R
(m)) should be

interpreted as the homogeneous degree m polynomials in x0, . . . , xn (with R-coefficients),
and Hn(Pn

R,OPn
R
(m)) should be interpreted as the homogeneous degree m Laurent poly-

nomials in x0, . . . , xn, where in each monomial, each xi appears with degree at most −1.

Proof. The H0 statement was an (important) exercise last quarter.
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Rather than consider O(m) for various m, we consider them all at once, by considering
F = ⊕mO(m).

Of course we take the standard cover U0 = D(x0), . . . , Un = D(xn) of P
n
R . Notice that if

I ⊂ {1, . . . , n}, then F(UI) corresponds to the Laurent monomials where each xi for i /∈ I

appears with non-negative degree.

We consider the Hn statement. Hn(Pn
R,F) is the cokernel of the following surjection

⊕n
i=0F(U{1,...,n}−{i}) → FU{1,...,n}

i.e.
⊕n

i=0R[x0, . . . , xn, x−1
0 , . . . , ^x−1

i , . . . x−1
n ] → R[x0, . . . , xn, x−1

0 , . . . , x−1
n ].

This cokernel is precisely as described.

We last consider the Hi statement (0 < i < n). We prove this by induction on n. The
cases n = 0 and 1 are trivial. Consider the exact sequence of quasicoherent sheaves:

0 // F
×xn

// F // F ′ // 0

where F ′ is analogous sheaf on the hyperplane xn = 0 (isomorphic to P
n−1
R ). (This exact

sequence is just the direct sum over all m of the exact sequence

0 // OP
n
R
(m − 1)

×xn
// OP

n
R
(m) // O

P
n−1
R

(m) // 0 ,

which in turn is obtained by twisting the closed subscheme exact sequence

0 // OPn
R
(m − 1)

×xn
// OPn

R
(m) // O

P
n−1
R

(m) // 0

by OP
n
R
(m).)

The long exact sequence in cohomology gives us:

0 // H0(Pn
R,F)

×xn
// H0(Pn

R,F) // H0(Pn−1
R ,F ′)

// H1(Pn
R,F)

×xn
// H1(Pn

R,F) // H1(Pn−1
R ,F ′)

. . . // Hn−1(Pn
R,F)

×xn
// Hn−1(Pn

R,F) // Hn−1(Pn−1
R ,F ′)

// Hn(Pn
R,F)

×xn
// Hn(Pn

R,F) // 0

.

We will now show that this gives an isomorphism

(3) ×xn : Hi(Pn
R,F) → Hi(Pn

R,F)

for 0 < i < n. The inductive hypothesis gives us this except for i = 1 and i = n−1, where
we have to pay a bit more attention. For the first, note that H0(Pn

R,F) // H0(Pn−1
R ,F ′)

is surjective: this map corresponds to taking the set of all polynomials in x0, . . . , xn, and
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setting xn = 0. The last is slightly more subtle: Hn−1(Pn−1
R ,F ′) → Hn(Pn

R,F) is injective,
and corresponds to taking a Laurent polynomial in x0, . . . , xn−1 (where in each monomial,
each xi appears with degree at most −1) and multiplying by x−1

n , which indeed describes
the kernel of Hn(Pn

R,F)
×xn

// Hn(Pn
R,F) . (This is a worthwhile calculation! See the exer-

cise after the end of this proof.) We have thus established (3) above.

We will now show that the localization Hi(Pn
R,F)xn

= 0. (Here’s what we mean by
localization. Notice Hi(Pn

R,F) is naturally a module over R[x0, . . . , xn] — we know how
to multiply by elements of R, and by (3) we know how to multiply by xi. Then we localize
this at xn to get an R[x0, . . . , xn]xn

-module.) This means that each element α ∈ Hi(Pn
R,F)

is killed by some power of xi. But by (3), this means that α = 0, concluding the proof of
the theorem.

Consider the Cech complex computing Hi(Pn
R,F). Localize it at xn. Localization and

cohomology commute (basically because localization commutes with operations of tak-
ing quotients, images, etc.), so the cohomology of the new complex is Hi(Pn

R,F)xn
. But

this complex computes the cohomology of Fxn
on the affine scheme Un, and the higher

cohomology of any quasicoherent sheaf on an affine scheme vanishes (by Theorem 2.2
which we’ve just proved — in fact we used the same trick there), so Hi(Pn

R,F)xn
= 0 as

desired. �

3.2. Exercise. Verify that Hn−1(Pn−1
R ,F ′) → Hn(Pn

R,F) is injective (likely by verifying that
it is the map on Laurent monomials we claimed above).

4. APPLICATION OF COHOMOLOGY: HILBERT POLYNOMIALS AND HILBERT FUNCTIONS;
DEGREES

We’ve already seen some powerful uses of this machinery, to prove things about spaces
of global sections, and to prove Serre vanishing. We’ll now see some classical construc-
tions come out very quickly and cheaply.

In this section, we will work over a field k. Define hi(X,F) := dimk Hi(X,F).

Suppose F is a coherent sheaf on a projective k-scheme X. Define the Euler characteristic

χ(X,F) =

dim X∑

i=0

(−1)ihi(X,F).

We will see repeatedly here and later that while Euler characteristics behave better than
individual cohomology groups. As one sign, notice that for fixed n, and m ≥ 0,

h0(Pn
k ,O(m)) =

(

n + m

m

)

=
(m + 1)(m + 2) · · · (m + n)

n!
.
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Notice that the expression on the right is a polynomial in m of degree n. (For later
reference, I want to point out that the leading term is mn/n!.) But it is not true that

h0(Pn
k ,O(m)) =

(m + 1)(m + 2) · · · (m + n)

n!

for all m — it breaks down for m ≤ −n − 1. Still, you can check that

χ(Pn
k ,O(m)) =

(m + 1)(m + 2) · · · (m + n)

n!
.

So one lesson is this: if one cohomology group (usual the top or bottom) behaves well in
a certain range, and then messes up, likely it is because (i) it is actually the Euler char-
acteristic which is behaving well always, and (ii) the other cohomology groups vanish in
that range.

In fact, we will see that it is often hard to calculate cohomology groups (even h0), but
it is often easier calculating Euler characteristics. So one important way of getting a hold
of cohomology groups is by computing the Euler characteristics, and then showing that
all the other cohomology groups vanish. Hence the ubiquity and importance of vanishing
theorems. (A vanishing theorem usually states that a certain cohomology group vanishes
under certain conditions.)

The following exercise already shows that Euler characteristic behaves well.

4.1. Exercise. Show that Euler characteristic is additive in exact sequences. In other
words, if 0 → F → G → H → 0 is an exact sequence of coherent sheaves on X, then
χ(X,G) = χ(X,F) + χ(X,H). (Hint: consider the long exact sequence in cohomology.)
More generally, if

0 → F1 → · · · → Fn → 0

is an exact sequence of sheaves, show that
n∑

i=1

(−1)iχ(X,Fi) = 0.

4.2. Exercise. Prove the Riemann-Roch theorem for line bundles on a nonsingular projective
curve C over k: suppose L is an invertible sheaf on C. Show that χ(L) = degL+χ(C,OC).
(Possible hint: Write L as the difference of two effective Cartier divisors, L ∼= O(Z − P)

(“zeros” minus “poles”). Describe two exact sequences 0 → OC(−P) → OC → OP → 0

and 0 → L(−Z) → L → OZ ⊗ L → 0, where L(−Z) ∼= OC(P).)

If F is a coherent sheaf on X, define the Hilbert function of F :
hF(n) := h0(X,F(n)).

The Hilbert function of X is the Hilbert function of the structure sheaf. The ancients were
aware that the Hilbert function is “eventually polynomial”, i.e. for large enough n, it
agrees with some polynomial, called the Hilbert polynomial (and denoted pF(n) or pX(n)).
In modern language, we expect that this is because the Euler characteristic should be a
polynomial, and that for n � 0, the higher cohomology vanishes. This is indeed the case,
as we now verify.
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I ended by stating the following, which we will prove next day.

4.3. Claim. — For n � 0, h0(X,F(n)) is a polynomial of degree equal to the dimension of the
support of F . In particular, h0(X,OX(n)) is “eventually polynomial” with degree = dim X.

E-mail address: vakil@math.stanford.edu
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Last day: Cohomology continued. Beginning of Hilbert functions

Today: Hilbert polynomials and Hilbert functions. Higher direct image sheaves.

1. APPLICATION OF COHOMOLOGY: HILBERT POLYNOMIALS AND HILBERT FUNCTIONS;
DEGREES

We’re in the process of seeing applications of cohomology. In this section, we will
work over a field k. We defined hi(X,F) := dimk Hi(X,F). If F is a coherent sheaf on a
projective k-scheme X, we defined the Euler characteristic

χ(X,F) =

dim X∑

i=0

(−1)ihi(X,F).

We will see repeatedly here and later that Euler characteristics behave better than indi-
vidual cohomology groups.

If F is a coherent sheaf on X, define the Hilbert function of F :

hF(m) := h0(X,F(m)).

The Hilbert function of X is the Hilbert function of the structure sheaf OX. The ancients
were aware that the Hilbert function is “eventually polynomial”, i.e. for large enough
n, it agrees with some polynomial, called the Hilbert polynomial (and denoted pF(m) or
pX(m)). In modern language, we expect that this is because the Euler characteristic should
be a polynomial, and that for m � 0, the higher cohomology vanishes. This is indeed the
case, as we now verify.
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1.1. Theorem. — If F is a coherent sheaf on a projective k-scheme X ↪→ Pn

k
, for m � 0,

h0(X,F(m)) is a polynomial of degree equal to the dimension of the support of F . In particular,
for m � 0, h0(X,OX(m)) is polynomial with degree = dim X.

(Here OX(m) is the restriction or pullback of OP
n

k
(1).)

I realize now that I will use the notion of associated primes of a module, not just of a
ring. I think I only discussed associated primes of a ring last quarter, because I had hoped
not to need this slightly more general case. Now I really don’t need it, and if you want to
ignore this issue, you can just prove the second half of the theorem, which is all we will
use anyway. But the argument carries through with no change, so please follow along if
you can.

Proof. For m � 0, hi(X,F(m)) = 0 by Serre vanishing (class 29 Theorem 4.2(ii)), so instead
we will prove that for all m, χ(X,F(m)) is a polynomial of degree equal to the dimension
of the support of F . Define pF(m) = χ(X,F(m)); we’ll show that pF(m) is a polynomial
of the desired degree.

Our approach will be a little weird. We’ll have two steps, and they will be very similar.
If you can streamline, please let me know.

Step 1. We first show that for all n, if F is scheme-theoretically supported a linear
subspace of dimension k (i.e. F is the pushforward of a coherent sheaf on some linear
subspace of dimension k), then pF(m) is a polynomial of degree at most k. (In particular,
for any coherent F , pF(m) is a polynomial of degree at most n.)

We prove this by induction on the dimension of the support. I’ll leave the base case
k = 0 (or better yet, k = −1) to you (exercise). Suppose now that X is supported in a
linear space Λ of dimension k, and we know the result for all k ′ < k. Then let x = 0 be
a hyperplane not containing Λ, so Λ ′ = dim(x = 0) ∩ Λ = k − 1. Then we have an exact
sequence

(1) 0 // K // F
×x

// F(1) // K ′ // 0

where K (resp. K ′) is the kernel (resp. cokernel) of the map ×x. Notice that K and K ′ are
both supported on Λ ′. (This corresponds to an algebraic fact: over an affine open Spec A,
the exact sequence is

0 // K // M
×x

// M // K ′ // 0

and both K = ker(×x) = (0 : x) and K ′ ∼= M/xM are (A/x)-modules.) Twist (1) by O(m)

and take Euler-characteristics to obtain pF(m + 1) − pF(m) = pK ′(m) − pK(m). By the
inductive hypothesis, the right side of this equation is a polynomial of degree at most
k − 1. Hence (by an easy induction) p(m) is a polynomial of degree at most k.

Step 2. We’ll now show that the degree of this polynomial is precisely dim SuppF . As F
is a coherent sheaf on a Noetherian scheme, it has a finite number of associated points, so
we can find a hypersurface H = (f = 0) not containing any of the associated points. (This
is that problem from last quarter that we have been repeatedly using recently: problem
24(c) on set 5, which was exercise 1.19 in the class 11 notes.) In particular, dim H∩ SuppF
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is strictly less than dim SuppF , and in fact one less by Krull’s Principal Ideal Theorem.
Let d = deg f. Then I claim that ×f : F(−d) → F is an inclusion. Indeed, on any affine
open set, the map is of the form ×f : M → M (where f is the restriction of f to this open
set), and the fact that f = 0 contains no associated points means that this is an injection of
modules. (Remember that those ring elements annihilating elements of M are precisely
the associated primes, and f is contained in none of them.) Then we have

0 → F(−d) → F → K ′ → 0.

Twisting by O(m) yields
0 → F(m − d) → F(m) → K ′(m) → 0.

Taking Euler characteristics gives pF(m)−pF (m−d) = pK ′(m). Now by step 1, we know
that pF(m) is a polynomial. Also, by our inductive hypothesis, and Exercise 1.2 below,
the right side is a polynomial of degree of precisely dim SuppF − 1. Hence p(m) is a
polynomial of degree dim SuppF . �

1.2. Exercise. Consider the short exact sequence of A-modules 0 // M
×f

// M // K ′ // 0 .
Show that Supp K ′ = Supp(M) ∩ Supp(A/f).

Notice that we needed the first part of the proof to ensure that pF(m) is in fact a poly-
nomial; otherwise, the second part would just show that pF(m) is just a polynomial when
m is fixed modulo d.

(For experts: here is a different way to avoid having two similar steps. If k is an infinite
field, e.g. if it were algebraically closed, then we could find a hypersurface as in step 2
of degree 1, using that problem from last quarter mentioned in the proof. So what to do
if k is not infinite? Note that if you have a complex of k-vector spaces, and you take its
cohomology, and then tensor with k, you get the same thing as if you tensor first, and
then take the cohomology. By this trick, we can assume that k is algebraically closed. In
fancy language: we have taken a faithfully flat base extension. I won’t define what this
means here; it will turn up early in the third quarter.)

Example 1. pPn(m) =
(

m+n

n

)

, where we interpret this as the polynomial (m + 1) · · · (m +

n)/n!.

Example 2. Suppose H is a degree d hypersurface in Pn. Then from
0 → OPn(−d) → OPn → OH → 0,

we have
pH(m) = pPn(m) − pPn(m − d) =

(

m + n

n

)

−

(

m + n − d

n

)

.

1.3. Exercise. Show that the twisted cubic (in P3) has Hilbert polynomial 3m + 1.

1.4. Exercise. Find the Hilbert polynomial for the dth Veronese embedding of Pn (i.e. the
closed immersion of Pn in a bigger projective space by way of the line bundle O(d)).
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From the Hilbert polynomial, we can extract many invariants, of which two are par-
ticularly important. The first is the degree. Classically, the degree of a complex projective
variety of dimension n was defined as follows. We slice the variety with n generally cho-
sen hyperplane. Then the intersection will be a finite number of points. The degree is
this number of points. Of course, this requires showing all sorts of things. Instead, we
will define the degree of a projective k-scheme of dimension n to be leading coefficient of the
Hilbert polynomial (the coefficient of mn) times n!.

For example, the degree of Pn in itself is 1. The degree of the twisted cubic is 3.

1.5. Exercise. Show that the degree of a degree d hypersurface is d (preventing a nota-
tional crisis).

1.6. Exercise. Suppose a curve C is embedded in projective space via an invertible sheaf
of degree d. (In other words, this line bundle determines a closed immersion.) Show that
the degree of C under this embedding is d (preventing another notational crisis). (Hint:
Riemann-Roch.)

1.7. Exercise. Find the degree of the dth Veronese embedding of Pn.

1.8. Exercise (Bezout’s theorem). Suppose X is a projective scheme of dimension at least 1,
and H is a degree d hypersurface not containing any associated points of X. (For example,
if X is a projective variety, then we are just requiring H not to contain any irreducible
components of X.) Show that deg H ∩ X = d deg X.

This is a very handy theorem! For example: if two projective plane curves of degree m

and degree n share no irreducible components, then they intersect in mn points, counted
with appropriate multiplicity. The notion of multiplicity of intersection is just the degree
of the intersection as a k-scheme.

We trot out a useful example for a third time: let k = Q, and consider the parabola
x = y2. We intersect it with the four usual suspects: x = 1, x = 0, x = −1, and x = 2, and
see that we get 2 each time (counted with the same convention as with the last time we
saw this example).

If we intersect it with y = 2, we only get one point — but that’s of course because this
isn’t a projective curve, and we really should be doing this intersection on P2

k
— and in

this case, the conic meets the line in two points, one of which is “at ∞”.

1.9. Exercise. Determine the degree of the d-fold Veronese embedding of Pn in a different
way as follows. Let vd : Pn → PN be the Veronese embedding. To find the degree of the
image, we intersect it with n hyperplanes in PN (scheme-theoretically), and find the num-
ber of intersection points (counted with multiplicity). But the pullback of a hyperplane
in PN to Pn is a degree d hypersurface. Perform this intersection in Pn, and use Bezout’s
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theorem. (If already you know the answer by the earlier exercise on the degree of the
Veronese embedding, this will be easier.)

There is another nice bit of information residing in the Hilbert polynomial. Notice that
pX(0) = χ(X,OX), which is an intrinsic invariant of the scheme X, which does not depend
on the projective embedding.

Imagine how amazing this must have seemed to the ancients: they defined the Hilbert
function by counting how many “functions of various degrees” there are; then they no-
ticed that when the degree gets large, it agrees with a polynomial; and then when they
plugged 0 into the polynomial — extrapolating backwards, to where the Hilbert function
and Hilbert polynomials didn’t agree — they found a magic invariant!

And now I can give you a nonsingular curve over an algebraically closed field that is
not P1! Note that the Hilbert polynomial of P1 is (m + 1)/1 = m + 1, so χ(OP1) = 1.
Suppose C is a degree d curve in P2. Then the Hilbert polynomial of C is

pP2(m) − pP2(m − d) = (m + 1)(m + 2)/2 − (m − d + 1)(m − d + 2)/2.

Plugging in m = 0 gives us −(d2 − 3d)/2. Thus when d > 2, we have a curve that cannot
be isomorphic to P1! (I think I gave you an earlier exercise that there is a nonsingular
degree d curve. Note however that the calculation above didn’t use nonsingularity.)

Now from 0 → OP2(−d) → OP2 → OC → 0, using h1(OP2(d)) = 0, we have that
h0(C,OC) = 1. As h0 − h1 = χ, we have

h1(C,OC) = (d − 1)(d − 2)/2.

Motivated by geometry, we define the arithmetic genus of a scheme X as 1−χ(X,OX). This
is sometimes denoted pa(X). In the case of nonsingular complex curves, this corresponds
to the topological genus. For irreducible reduced curves (or more generally, curves with
h0(X,OX) ∼= k), pa(X) = h1(X,OX). (In higher dimension, this is a less natural notion.)

We thus now have examples of curves of genus 0, 1, 3, 6, 10, . . . (corresponding to degree
1 or 2, 3, 4, 5, . . . ).

This begs some questions, such as: are there curves of other genera? (Yes.) Are there
other genus 1 curves? (Not if k is algebraically closed, but yes otherwise.) Do we have all
the curves of genus 3? (Almost all, but not quite all.) Do we have all the curves of genus
6? (We’re missing most of them.)

Caution: The Euler characteristic of the structure sheaf doesn’t distinguish between
isomorphism classes of nonsingular projective schemes over algebraically closed fields
— for example, P1×P1 and P2 both have Euler characteristic 1, but are not isomorphic (as
for example Pic P2 ∼= Z while Pic P1 × P1 ∼= Z ⊕ Z).

Important Remark. We can restate the Riemann-Roch formula as:

h0(C,L) − h1(C,L) = degL − pa + 1.

This is the most common formulation of the Riemann-Roch formula.
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1.10. Complete intersections. We define a complete intersection in Pn as follows. Pn is a
complete intersection in itself. A closed subscheme Xr ↪→ Pn of dimension r (with r < n)
is a complete intersection if there is a complete intersection Xr+1, and Xr is a Cartier divisor
in class OXr+1

(d).

Exercise. Show that if X is a complete intersection of dimension r in Pn, then Hi(X,OX(m)) =

0 for all 0 < i < r and all m. Show that if r > 0, then H0(Pn,O(m)) → H0(X,O(m)) is
surjective.

Now in my definition, Xr is the zero-divisor of a section of OXr+1
(m) for some m. But

this section is the restriction of a section of O(m) on Pn. Hence Xr is the scheme-theoretic
intersection of Xr+1 with a hypersurface. Thus inductively we can show that Xr is the
scheme-theoretic intersection of n − r hypersurfaces. (By Bezout’s theorem, deg Xr is the
product of the degree of the defining hypersurfaces.)

Exercise. Show that complete intersections of positive dimension are connected. (Hint:
show h0(X,OX) = 1.)

Exercise. Find the genus of the intersection of 2 quadrics in P3. (We get curves of more
genera by generalizing this!)

Exercise. Show that the rational normal curve of degree d in Pd is not a complete inter-
section if d > 2.

Exercise. Show that the union of 2 distinct planes in P4 is not a complete intersection.
(This is the first appearance of another universal counterexample!) Hint: it is connected,
but you can slice with another plane and get something not connected.

This is another important scheme in algebraic geometry that is an example of many
sorts of behavior. We will see more of it later!

2. HIGHER DIRECT IMAGE SHEAVES

I’ll now introduce a notion generalizing these Cech cohomology groups. Cohomology
groups were defined for X → Spec A where the structure morphism is quasicompact and
separated; for any quasicoherent F on X, we defined Hi(X,F).

We’ll now do something similar for quasicompact and separated morphisms π : X → Y:
for any quasicoherent F on X, we’ll define Riπ∗F , a quasicoherent sheaf on Y.

We have many motivations for doing this. In no particular order:

(1) It “globalizes” what we were doing anywhere.
(2) If 0 → F → G → H → 0 is a short exact sequence of quasicoherent sheaves on X,

then we know that 0 → π∗F → π∗G → π∗H is exact, and higher pushforwards will
extend this to a long exact sequence.
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(3) We’ll later see that this will show how cohomology groups vary in families, espe-
cially in “nice” situations. Intuitively, if we have a nice family of varieties, and a
family of sheaves on them, we could hope that the cohomology varies nicely in
families, and in fact in “nice” situations, this is true. (As always, “nice” usually
means “flat”, whatever that means.)

There will be no extra work involved for us.

Suppose π : X → Y, and F is a quasicoherent sheaf on X. For each Spec A ⊂ Y, we
have A-modules Hi(π−1(Spec A),F). We will show that these patch together to form a
quasicoherent sheaf. We need check only one fact: that this behaves well with respect to
taking distinguished opens. In other words, we must check that for each f ∈ A, the natu-
ral map Hi(π−1(Spec A),F) → Hi(π−1(Spec A),F)f (induced by the map of spaces in the
opposite direction — Hi is contravariant in the space) is precisely the localization ⊗AAf.
But this can be verified easily: let {Ui} be an affine cover of π−1(Spec A). We can compute
Hi(π−1(Spec A),F) using the Cech complex. But this induces a cover Spec Af in a natural
way: If Ui = Spec Ai is an affine open for Spec A, we define U ′

i
= Spec(Ai)f. The resulting

Cech complex for Spec Af is the localization of the Cech complex for Spec A. As taking
cohomology of a complex commutes with localization, we have defined a quasicoherent
sheaf on Y by one of our definitions of quasicoherent sheaves.

2.1. (Something important happened in that last sentence — localization commuting with
taking cohomology. If you want practice with this notion, here is an exercise: suppose
C0 → C1 → C2 is a complex in an abelian category, and F is an exact functor to another
abelian category. Show that F applied to the cohomology of this complex is naturally iso-
morphic to the cohomology of F of this complex. Translation: taking cohomology com-
mutes with exact functors. In the particular case of this construction, the exact functor in
equation is the localization functor ⊗AAf from A-modules to Af-modules. I’ll discuss this
a bit more at the start of the class 32 notes.)

Define the ith higher direct image sheaf or the ith (higher) pushforward sheaf to be
this quasicoherent sheaf.

2.2. Theorem. —

(a) R0π∗F is canonically isomorphic to π∗F .
(b) Riπ∗ is a covariant functor from the category of quasicoherent sheaves on X to the category

of quasicoherent sheaves on Y, and a contravariant functor in Y-schemes X.
(c) A short exact sequence 0 → F → G → H → 0 of sheaves on X induces a long exact

sequence
0 // R0π∗F

// R0π∗G
// R0π∗H

//

R1π∗F
// R1π∗G

// R1π∗H
// · · ·

of sheaves on Y. (This is often called the corresponding long exact sequence of higher
pushforward sheaves.)
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(d) (projective pushforwards of coherent are coherent) If π is a projective morphism and OY is
coherent on Y (this hypothesis is automatic for Y locally Noetherian), and F is a coherent
sheaf on X, then for all i, Riπ∗F is a coherent sheaf on Y.

Proof. Because it suffices to check each of these results on affine opens, they all follow
from the analogous statements in Cech cohomology. �

The following result is handy (and essentially immediate from our definition).

2.3. Exercise. Show that if π is affine, then for i > 0, Riπ∗F = 0. Moreover, show that if Y

is quasicompact and quasiseparated then the natural morphism Hi(X,F) → Hi(Y, f∗F) is
an isomorphism. (A special case of the first sentence is a special case we showed earlier,
when π is a closed immersion. Hint: use any affine cover on Y, which will induce an
affine cover of X.)

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 32

RAVI VAKIL
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3. Toward the Leray spectral sequence: Crash course in spectral sequences 4

Last day: Hilbert polynomials and Hilbert functions. Higher direct image sheaves.

Today: Applications of higher pushforwards; crash course in spectral sequences; to-
wards the Leray spectral sequence.

1. A USEFUL ALGEBRAIC FACT

I’d like to start with an algebra exercise that is very useful.

1.1. Exercise (Important algebra exercise). Suppose M1
α // M2

β // M3 is a complex of
A-modules (i.e. β ◦ α = 0), and N is an A-module. (a) Describe a natural homomorphism
of the cohomology of the complex, tensored with N, with the cohomology of the complex
you get when you tensor with N, H(M∗) ⊗A B → H(M∗ ⊗A N), i.e.

(

ker β

im α

)

⊗A N →
ker(β ⊗ N)

im(α ⊗ N)
.

I always forget which way this map is supposed to go.
(b) If N is flat, i.e. ⊗N is an exact functor, show that the morphism defined above is an
isomorphism. (Hint: This is actually a categorical question: if M∗ is an exact sequence
in an abelian category, and F is a right-exact functor, then (a) there is a natural morphism
FH(M∗) → H(FM∗), and (b) if F is an exact functor, this morphism is an isomorphism.)

Example: localization is exact, so S−1A is a flat A-algebra for all multiplicative sets S. In
particular, Af is a flat A-algebra. We used (b) implicitly last day, when I said that given a
quasicompact, separated morphism π : X → Y, and an affine open subset Spec A of Y, and
a distinguished affine open Spec Af of that, the cohomology of any Cech complex com-
puting the cohomology π−1(Spec A), tensored with Af, would be naturally isomorphic to
the cohomology of the complex you get when you tensor with Af.

Date: Thursday, February 16, 2006. Updated June 26.
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Here is another example.

1.2. Exercise (Higher pushforwards and base change). (a) Suppose f : Z → Y is any morphism,
and π : X → Y as usual is quasicompact and separated. Suppose F is a quasicoherent
sheaf on X. Let

W
f ′

//

π ′

��

X

π

��
Z

f // Y

is a fiber diagram. Describe a natural morphism f∗(Riπ∗F) → Riπ ′
∗(f

′)∗F .

(b) If f : Z → Y is an affine morphism, and for a cover Spec Ai of Y, where f−1(Spec Ai) =
Spec Bi, Bi is a flat A-algebra, show that the natural morphism of (a) is an isomorphism.
(You can likely generalize this immediately, but this will lead us into the concept of flat
morphisms, and we’ll hold off discussing this notion for a while.)

A useful special case if the following. If f is a closed immersion of a closed point in
Y, the right side is the cohomology of the fiber, and the left side is the fiber of the co-
homology. In other words, the fiber of the higher pushforward maps naturally to the
cohomology of the fiber. We’ll later see that in good situations this is an isomorphism,
and thus the higher direct image sheaf indeed “patches together” the cohomology on
fibers.

Here is one more consequence of our algebraic fact.

1.3. Exercise (projection formula). Suppose π : X → Y is quasicompact and separated, and
E , F are quasicoherent sheaves on X and Y respectively. (a) Describe a natural morphism

(Riπ∗E) ⊗F → Riπ∗(E ⊗ π∗F).

(b) If F is locally free, show that this natural morphism is an isomorphism.

Here is another consequence, that I stated in class 33. (It is still also in the class 33
notes.)

Exercise. Suppose that X is a quasicompact separated k-scheme, where k is a field. Sup-
pose F is a quasicoherent sheaf on X. Let Xk = X ×Spec k Spec k, and f : Xk → X the
projection. Describe a natural isomorphism Hi(X,F) ⊗k k → Hi(Xk, f

∗F). Recall that a
k-scheme X is geometrically integral if Xk is integral. Show that if X is geometrically integral
and projective, then H0(X,OX) ∼= k. (This is a clue that P

1
C

is not a geometrically integral
R-scheme.)

2. FUN APPLICATIONS OF THE HIGHER PUSHFORWARD

Last day we proved that if π : X → Y is a projective morphism, and F is a coherent
sheaf on X, then π∗F is coherent (under a technical assumption: if either Y and hence X

are Noetherian; or more generally if OY is a coherent sheaf).
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As a nice immediate consequence is the following. Finite morphisms are affine (from
the definition) and projective (an earlier exercise); the converse also holds.

2.1. Corollary. — If π : X → Y is projective and affine and OY is coherent, then π is finite.

In fact, more generally, if π is universally closed and affine, then π is finite. We won’t
use this, so I won’t explain why, but you can read about it in Atiyah-Macdonald, Exercise
5.35.

Proof. By the theorem from last day, π∗OX is coherent and hence finitely generated. �

Here is another handy theorem.

2.2. Theorem (relative dimensional vanishing). — If f : X → Y is a projective morphism and OY

is coherent, then the higher pushforwards vanish in degree higher than the maximum dimension
of the fibers.

This is false without the projective hypothesis. Here is an example of why.

Exercise. Consider the open immersion π : A
n − 0 → A

n. By direct calculation, show that
Rn−1f∗OAn−0 6= 0.

Proof. Let m be the maximum dimension of all the fibers.

The question is local on Y, so we’ll show that the result holds near a point p of Y. We
may assume that Y is affine, and hence that X ↪→ P

n
Y .

Let k be the residue field at p. Then f−1(p) is a projective k-scheme of dimension at
most m. Thus we can find affine open sets D(f1), . . . , D(fm+1) that cover f−1(p). In other
words, the intersection of V(fi) does not intersect f−1(p).

If Y = Spec A and p = [p] (so k = Ap/pAp), then arbitrarily lift each fi from an element
of k[x0, . . . , xn] to an element f ′

i of Ap[x0, . . . , xn]. Let F be the product of the denominators
of the f ′

i; note that F /∈ p, i.e. p = [p] ∈ D(F). Then f ′
i ∈ AF[x0, . . . , xn]. The intersection

of their zero loci ∩V(f ′
i) ⊂ P

n
AF

is a closed subscheme of P
n
AF

. Intersect it with X to get
another closed subscheme of P

n
AF

. Take its image under f; as projective morphisms are
closed, we get a closed subset of D(F) = Spec AF. But this closed subset does not include
p; hence we can find an affine neighborhood Spec B of p in Y missing the image. But if
f ′′
i are the restrictions of f ′

i to B[x0, . . . , xn], then D(f ′′
i ) cover f−1(Spec B); in other words,

over f−1(Spec B) is covered by m + 1 affine open sets, so by the affine-cover vanishing
theorem, its cohomology vanishes in degree at least m + 1. But the higher-direct image
sheaf is computed using these cohomology groups, hence the higher direct image sheaf
Rif∗F vanishes on Spec B too. �
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2.3. Important Exercise. Use a similar argument to prove semicontinuity of fiber dimension
of projective morphisms: suppose π : X → Y is a projective morphism where OY is coher-
ent. Show that {y ∈ Y : dim f−1(y) > k} is a Zariski-closed subset. In other words, the
dimension of the fiber “jumps over Zariski-closed subsets”. (You can interpret the case
k = −1 as the fact that projective morphisms are closed.) This exercise is rather important
for having a sense of how projective morphisms behave! Presumably the result is true
more generally for proper morphisms.

Here is another handy theorem, that is proved by a similar argument. We know that
finite morphisms are projective, and have finite fibers. Here is the converse.

2.4. Theorem (projective + finite fibers = finite). — Suppose π : X → Y is such that OY is
coherent. Then π is projective and finite fibers if and only if it is finite. Equivalently, π is projective
and quasifinite if and only it is finite.

(Recall that quasifinite = finite fibers + finite type. But projective includes finite type.)

It is true more generally that proper + quasifinite = finite. (We may see that later.)

Proof. We show it is finite near a point y ∈ Y. Fix an affine open neighborhood Spec A of
y in Y. Pick a hypersurface H in P

n
A missing the preimage of y, so H ∩ X is closed. (You

can take this as a hint for Exercise 2.3!) Let H ′ = π∗(H ∩ X), which is closed, and doesn’t
contain y. Let U = Spec R − H ′, which is an open set containing y. Then above U, π is
projective and affine, so we are done by the previous Corollary 2.1. �

Here is one last potentially useful fact. (To be honest, I’m not sure if we’ll use it in this
course.)

2.5. Exercise. Suppose f : X → Y is a projective morphism, with O(1) on X. Suppose Y is
quasicompact and OY is coherent. Let F be coherent on X. Show that

(a) f∗f∗F(n) → F(n) is surjective for n � 0. (First show that there is a natural map
for any n! Hint: by adjointness of f∗ with f∗.) Translation: for n � 0, F(n) is
relatively generated by global sections.

(b) For i > 0 and n � 0, Rif∗F(n) = 0.

3. TOWARD THE LERAY SPECTRAL SEQUENCE: CRASH COURSE IN SPECTRAL
SEQUENCES

My goal now is to tell you enough about spectral sequences that you’ll have a good
handle on how to use them in practice, and why you shouldn’t be frightened when they
come up in a seminar. There will be some key points that I will not prove; it would be
good, once in your life, to see a proof of these facts, or even better, to prove it yourself.
Then in good conscience you’ll know how the machine works, and you can close the hood
once and for all and just happily drive the powerful machine.
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My philosophy will be to tell you just about a stripped down version of spectral se-
quences, which frankly is what is used most of the time. You can always gussy it up later
on. But it will be enough to give a quick proof of the Leray spectral sequence.

A good reference as always is Weibel. I learned it from Lang’s Algebra. I don’t neces-
sarily endorse that, but at least his exposition is just a few pages long.

Let’s get down to business.

For me, a double complex (in an abelian category) will be a bunch of objects Ap,q (p, q ∈

Z), which are zero unless p, q ≥ 0, and morphisms dp,q : Ap,q → Ap+1,q and δp,q : Ap,q →
Ap,q+1 (we will always write these as d and δ and ignore the subscripts) satisfying d2 = 0

and δ2 = 0, and one more condition: either dδ = δd (“all the squares commute”) or
dδ + δd = 0 (they all “anticommute”). Both come up, and you can switch from one to
the other by replacing δp,q with (−1)pδp,q. So I’ll hereafter presume that all the squares
anticommute, but that you know how to turn the commuting case into this one.

Also, there are variations on this definition, where for example the vertical arrows go
downwards, or some different subset of the Ap,q are required to be zero, but I’ll leave
these straightforward variations to you.

From the double complex (with the anticommuting convention), we construct a cor-
responding (single) complex A∗ with Ak = ⊕iA

i,k−i, with D = d + δ. Note that D2 =
(d + δ)2 = d2 + (dδ + δd) + δ2 = 0, so A∗ is indeed a complex. (Be sure you see how to
interpret this in A∗,∗!)

The cohomology of the single complex is sometimes called the hypercohomology of the
double complex.

Our motivating goal will be to find the hypercohomology of the double complex. (You’ll
see later that we’ll have other real goals, and that this is a red herring.)

Then here is recipe for computing (information) about the cohomology. We create a
countable sequence of tables as follows. Table 0, denoted E

p,q
0 , is defined as follows: E

p,q
0 =

Ap,q.

We then look just at the vertical arrows (the δ-arrows).

• • •

•

OO

•

OO

•

OO

•

OO

•

OO

•

OO

The columns are complexes, so we take cohomology of these vertical complexes, result-
ing in a new table, E

p,q
1 . Then there are natural morphisms from each entry of the new
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table to the entry on the right. (This needs to be checked!)
• // • // •

• // • // •

• // • // •

The composition of two of these morphisms is again zero, so again we have complexes.
We take cohomology of these as well, resulting in a new table, E

p,q
2 . It turns out that there

are natural morphisms from each entry to the entry two to the right and one below, and
that the composition of these two is 0.

•

''O

O

O

O

O

O

O

O

O

O

O

O

O

O

• •

•

''O

O

O

O

O

O

O

O

O

O

O

O

O

O
• •

• • •

This can go on until the cows come home. The order of the morphisms is shown pictori-
ally below.

•

OO

//

''N

N

N

N

N

N

N

N

N

N

N

N

N

$$I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

(Notice that the map always is “degree 1” in the grading of the single complex.)

Now if you follow any entry in our original table, eventually the arrow into it will
come from outside of the first quadrant, and the arrow out of it will go to outside the first
quadrant, so after a certain stage the complex will look like 0 → E

p,q
? → 0. Then after that

stage, the (p, q)-entry will never change. We define Ep,q
∞ to be the table whose (p, q)th

entry is this object. We say that E
p,q
k converges to Ep,q

∞ .

Then it is a fact (or even a theorem) that there is a filtration of Hk(A∗) by More precisely
you can filter Hk(A∗) with k + 1 objects whose successive quotients are Ei,k−i

∞ , where the
sub-object is Ek,0

∞ , and the quotient Hk(A∗) by the next biggest object is E0,k
∞ . I hope that is

clear; please let me know if I can say it better! The following may help:

E0,k
∞ E1,k−1

∞ Ek−1,1
∞ Ek,0

∞

Hk(A∗) ⊃ ? ⊃ ? ⊃ · · · ⊃ ? ⊃ ? ⊃ 0

(I always forget which way the quotients are supposed to go. One way of remembering
it is by having some idea of how the result is proved. The picture here is that the double
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complex is filtered by subcomplexes ⊕p≥k,q≥0A
p,q, and the first term corresponding by

taking the cohomology of the subquotients of this filtration. Then the “biggest quotient”
corresponds to the left column, which remains true at the level of cohomology. If this
doesn’t help you, just ignore this parenthetical comment. If you have a better way of
remembering this, even a mnemonic trick, please let me know!)

The sequence E
p,q
k is called a spectral sequence, and we say that it abuts to H∗(A∗). We

often say that E
p,q
2 (or any other term) abuts to H.

Unfortunately, you only get partial information about H∗(A∗). But there are some cases
where you get more information: if all Ei,k−i

∞ are zero, or if all but one of them are zero;
or if we are in the category of vector spaces over a field k, and are interested only in the
dimension of H∗(A∗).

Also, in good circumstances, E2 (or some other low term) already equals E∞.

3.1. Exercise. Show that H0(A∗) = E0,0
∞ = E0,0

2 and

0 → E1,0
2 → H1(A∗) → E0,1

2 → E2,0
2 → H2(A∗).

3.2. Exercise. Suppose we are working in the category of vector spaces over a field k,
and ⊕p,qE

p,q
2 is a finite-dimensional vector space. Show that χ(H∗(A∗)) is well-defined,

and equals
∑

p,q(−1)p+qE
p,q
2 . (It will sometimes happen that ⊕E

p,q
0 will be an infinite-

dimensional vector space, but that Ep,q
2 will be finite-dimensional!)

Eric pointed out that I was being a moron, and I could just as well have done everything
in the opposite direction, i.e. reversing the roles of horizontal and vertical morphisms.
Then the sequences of arrows giving the spectral sequence would look like this:

• //

OO

WW0
0

0

0

0

0

0

0

0

0

0

0

0

ZZ5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

Then we would again get pieces of a filtration of H∗(A∗) (where we have to be a bit careful
with the order with which Ep,q

∞ corresponds to the subquotients — it in the opposite order
to the previous case).

I tried unsuccessfully to convince that Eric that I am not a moron, and that this was my
secret plan all along. Both algorithms compute the same thing, and usually we don’t care
about the final answer — we often care about the answer we get in one way, and we get
at it by doing the spectral sequence in the other way.

Now we’re ready to try this out, and see how to use it in practice.
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The moral of these examples is what follows: in the past, you’ve had prove various facts
involving various sorts of diagrams, which involved chasing elements all around. Now,
you’ll just plug them into a spectral sequence, and let the spectral sequence machinery do
your chasing for you.

Example: Proving the snake lemma. Consider the diagram

0 // D // E // F // 0

0 // A //

α

OO

B //

β

OO

C

γ

OO

// 0

where the rows are exact and the squares commute. (Normally the snake lemma is de-
scribed with the vertical arrows pointing downwards, but I want to fit this into my spec-
tral sequence conventions.) We wish to show that there is an exact sequence

(1) 0 → ker α → ker β → ker γ → im α → im β → im γ → 0.

We plug this into our spectral sequence machinery. We first compute the hypercoho-
mology by taking the rightward morphisms first, i.e. using the order

• //

OO

WW0
0

0

0

0

0

0

0

0

0

0

0

0

ZZ5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

Then because the rows are exact, Ep,q
1 = 0, so the spectral sequence has already converged:

Ep,q
∞ = 0.

We next compute this “0” in another way, by computing the spectral sequence starting
in the other direction.

•

OO

//

''N

N

N

N

N

N

N

N

N

N

N

N

N

$$I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Then E∗,∗
1 (with its arrows) is:

0 // im α // im β // im γ // 0

0 // ker α // ker β // ker γ // 0.
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Then we compute E∗,∗
2 and find:

0

''N

N

N

N

N

N

N

N

N

N

N

N

N

N

N ??

''N

N

N

N

N

N

N

N

N

N

N

N

N

N ?

''O

O

O

O

O

O

O

O

O

O

O

O

O

O

O ? 0

0 ? ? ?? 0.

Then we see that after E2, all the terms will stabilize except for the double question marks;
and after E3, even these two will stabilize. But in the end our complex must be the 0

complex. This means that in E2, all the entries must be zero, except for the two double
question marks; and these two must be the same. This means that 0 → ker α → ker β →
ker γ and im α → im β → im γ → 0 are both exact (that comes from the vanishing of the
single-question-marks), and

coker(ker β → ker γ) ∼= ker(imα → im β)

is an isomorphism (that comes from the equality of the double-question-marks). Taken
together, we have proved the snake lemma (1)!

Example: the Five Lemma. Suppose

(2) F // G // H // I // J

A //

α

OO

B //

β

OO

C

γ

OO

// D //

δ

OO

E

ε

OO

where the rows are exact and the squares commute.

Suppose α, β, δ, ε are isomorphisms. We’ll show that γ is an isomorphism.

We first compute the cohomology of the total complex by starting with the rightward
arrows:

• //

OO

WW0
0

0

0

0

0

0

0

0

0

0

0

0

ZZ5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

(I chose this because I see that we will get lots of zeros.) Then E1 looks like this:

? 0 0 0 ?

?

OO

0

OO

0

OO

0

OO

?

OO

Then E2 looks similar, and the sequence will converge by E2 (as we’ll never get any arrows
between two non-zero entries in a table thereafter). We can’t conclude that the cohomol-
ogy of the total complex vanishes, but we can note that it vanishes in all but four degrees
— and most important, in the two degrees corresponding to the entries C and H (the
source and target of γ).
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We next compute this in the other direction:

•

OO

//

''N

N

N

N

N

N

N

N

N

N

N

N

N

$$I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Then E1 looks like this:
0 // 0 // ? // 0 // 0

0 // 0 // ? // 0 // 0

and the spectral sequence converges at this step. We wish to show that those two ?’s
are zero. But they are precisely the cohomology groups of the total complex that we just
showed were zero — so we’re done!

Exercise. By looking at this proof, prove a subtler version of the five lemma, where
one of the isomorphisms can instead just be required to be an injection, and another can
instead just be required to be a surjection. (I’m deliberately not telling you which ones,
so you can see how the spectral sequence is telling you how to improve the result.) I’ve
heard this called the “subtle five lemma”, but I like calling it the 4 1

2
-lemma.

Exercise. If β and δ (in (2)) are injective, and α is surjective, show that γ is injective.
State the dual statement. (The proof of the dual statement will be essentially the same.)

Exercise. Use spectral sequences to show that a short exact sequence of complexes gives
a long exact sequence in cohomology.

3.3. Exercise. Suppose µ : A∗ → B∗ is a morphism of complexes. Suppose C∗ is the single
complex associated to the double complex A∗ → B∗. (C∗ is called the mapping cone of µ.)
Show that there is a long exact sequence of complexes:

· · · → Hi−1(C∗) → Hi(A∗) → Hi(B∗) → Hi(C∗) → Hi+1(A∗) → · · · .

(There is a slight notational ambiguity here; depending on how you index your double
complex, your long exact sequence might look slightly different.) In particular, people
often use the fact µ induces an isomorphism on cohomology if and only if the mapping
cone is exact.

(Does anyone else have some classical important fact that would be useful practice for
people learning spectral sequences?)

Next day, I’ll state and prove the Leray spectral sequence in algebraic geometry.
E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 33

RAVI VAKIL
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2.2. The Riemann-Hurwitz formula 4

Last day: Applications of higher pushforwards; crash course in spectral sequences.

Today: The Leray spectral sequence. Beginning fun with curves: the Riemann-
Hurwitz formula.

Before I start, here is one small comment I should have made earlier. In the notation
Rjf∗F for higher pushforward sheaves, the “R” stands for “right derived functor”, and
“corresponds” to the fact that we get a long exact sequence in cohomology extending
to the right (from the 0th terms). More generally, next quarter we will see that in good
circumstances, if we have a left-exact functor, there may be a long exact sequence going
off to the right, in terms of right derived functors. Similarly, if we have a right-exact
functor (e.g. if M is an A-module, then ⊗AM is a right-exact functor from the category of
A-modules to itself), there may be a long exact sequence going off to the left, in terms of
left derived functors.

Here is another exercise that I should have asked earlier. I have also now included it in
the class 32 notes (in section 1).

Exercise. Suppose that X is a quasicompact separated k-scheme, where k is a field. Sup-
pose F is a quasicoherent sheaf on X. Let Xk = X ×Spec k Spec k, and f : Xk → X the
projection. Describe a natural isomorphism Hi(X,F) ⊗k k → Hi(Xk, f

∗F). Recall that a
k-scheme X is geometrically integral if Xk is integral. Show that if X is geometrically integral
and projective, then H0(X,OX) ∼= k. (This is a clue that P1

C
is not a geometrically integral

R-scheme.)

Date: Tuesday, February 21, 2006. Updated June 26.
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1. LERAY SPECTRAL SEQUENCE

Suppose

X
f

//

h
  

@@
@@

@@
@@

Y

g
��~~

~~
~~

~~

Z,

with f and g (and hence h) quasicompact and separated. Suppose F is a quasicoherent
sheaf on X. The Leray spectral sequence lets us find out about the higher pushforwards
of h in terms of the higher pushforwards under g of the higher pushforwards under f.

1.1. Theorem (Leray spectral sequence). — There is a spectral sequence whose E
p,q
2 -term is

Rjg∗(R
if∗F), abutting to Ri+jh∗F .

An important special case is if Z = Spec k, or Z is some other base ring. Then this
gives us handle on the cohomology of F on X in terms of the cohomology of its higher
pushforwards to Y.

Proof. We assume Z is an affine ring, say Spec A. Our construction will be “natural” and
will hence glue. (At worst, we you can check that it behaves well under localization.)

Fix a finite affine cover of X, Ui. Fix a finite affine cover of Y, Vj. Create a double
complex

Ea,b
0 = ⊕|I|=a+1,|J|=b+1F(UI ∩ π−1VJ)

for a, b ≥ 0, with obvious Cech differential maps. By exercise 15 on problem set 11 (class
25, exercise 1.31), UI ∩ π−1VJ is affine (for all I, J).

Let’s choose the filtration that corresponds to first taking the arrow in the vertical (V)
direction. For each I, we’ll get a Cech covering of UI. The Cech cohomology of an affine is
trivial except for H0, so the E1 term will be 0 except when j = 0. There, we’ll get ⊕F(UI).
Then the E2 term will be E

p,q
2 = Hp(X,F) = Γ(Z, Rph∗F) if q = 0 and 0 otherwise, and it

will converge there.

Let’s next choose the filtration that corresponds to first taking the arrow in the horizon-
tal (U) direction. For each VJ, we will get a Cech covering of π−1VJ. The entries of E1 will
thus be ⊕JH

i(f−1Vj,F) = ⊕jΓ(Vj, R
iπ∗F). Thus E2 will be as advertised in the statement

of Leray. �

Here are some useful examples.

Consider hi(Pm
k ×k Pn

k ,OPm
k
×kPn

k
). We get 0 unless i = 0, in which case we get 1. (The

same argument shows that hi(Pm
A ×A Pn

A,OPm
A
×APn

A
) ∼= A if i = 0, and 0 otherwise.) You

should make this precise:

2



Exercise. Suppose Y is any scheme, and π : Pn
Y → Y is the trivial projective bundle over

Y. Show that π∗OPn
Y

∼= OY . More generally, show that Rjπ∗O(m) is a finite rank free sheaf
on Y, and is 0 if j 6= 0, n. Find the rank otherwise.

More generally, let’s consider Hi(Pm
k ×k Pn

k ,O(a, b)). I claim that for each (a, b) at most
one cohomology group is non-trivial, and it will be i = 0 if a, b ≥ 0; i = m + n if
a ≤ −m − 1, b ≤ −n − 1; i = m if a ≥ 0, b ≤ −n − 1, and i = n if a ≤ −m − 1, b = 0. I
attempted to show this to you in a special case, in the hope that you would see how the
argument goes. I tried to show that hi(P2

k ×k P1
k,O(−4, 1)) is 6 if i = 2 and 0 otherwise.

The following exercise will help you see if you understood this.

Exercise. Let A be any ring. Suppose a is a negative integer and b is a positive integer.
Show that Hi(Pm

A ×A Pn
A,O(a, b)) is 0 unless i = m, in which case it is a free A-module.

Find the rank of this free A-module. (Hint: Use the previous exercise, and the projection
formula, which was Exercise 1.3 of class 32, and exercise 17 of problem set 14.)

We can now find curves of any (non-negative) genus, over any algebraically closed
field. An integral projective nonsingular curve over k is hyperelliptic if admits a finite
degree 2 morphism (or “cover”) of P1.

1.2. Exercise. (a) Find the genus of a curve in class (2, n) on P1
k ×k P1

k. (A curve in class
(2, n) is any effective Cartier divisor corresponding to invertible sheaf O(2, n). Equiva-
lently, it is a curve whose ideal sheaf is isomorphic to O(−2, −n). Equivalently, it is a
curve cut out by a non-zero form of bidegree (2, n).)
(b) Suppose for convenience that k is algebraically closed of characteristic not 2. Show
that there exists an integral nonsingular curve in class (2, n) on P

1
k × P

1
k for each n > 0.

1.3. Exercise. Suppose X and Y are projective k-schemes, and F and G are coherent
sheaves on X and Y respectively. Recall that if π1 : X × Y → X and π2 : X × Y → Y are
the two projections, then F � G := π∗

1F ⊗ π∗

2G. Prove the following, adding additional
hypotheses if you find them necessary.
(a) Show that H0(X × Y,F � G) = H0(X,F) ⊗ H0(Y,G).
(b) Show that HdimX+dimY(X × Y,F � G) = Hdim X(X,F)⊗k HdimY(Y,G).
(c) Show that χ(X × Y,F � G) = χ(X,F)χ(Y,G).

I suspect that this Leray spectral sequence converges in this case at E2, so that hn(X ×

Y,F � G) =
∑

i+j=n hi(X,F)hj(Y,G). Or if this is false, I’d like to see a counterexample. It
might even be true that

Hn(X × Y,F � G) = ⊕i+j=nHi(X,F) ⊗ Hj(Y,G).

2. FUN WITH CURVES

We already know enough to study curves in a great deal of detail, so this seems like a
good way to end this quarter. We get much more mileage if we have a few facts involving
differentials, so I’ll introduce these facts, and take them as a black box. The actual black

3



boxes we’ll need are quite small, but I want to tell you some of the background behind
them.

For this topic, we will assume that all curves are projective geometrically integral non-
singular curves over a field k. We will sometimes add the hypothesis that k is alge-
braically closed.

Most people are happy with working over algebraically closed fields, and all of you
should ignore the adverb “geometrically” in the previous paragraph. For those inter-
ested in non-algebraically closed fields, an example of a curve that is integral but not
geometrically integral is P1

C
over R. Upon base change to the algebraic closure C of R, this

curve has two components.

2.1. Differentials on curves. There is a sheaf of differentials on a curve C, denoted ΩC,
which is an invertible sheaf. (In general, nonsingular k-varieties of dimension d will
have a sheaf of differentials over k that will be locally free of rank k. And differentials
will be defined in vastly more generality.) We will soon see that this invertible sheaf has
degree equal to twice the genus minus 2: deg ΩC = 2gc − 2 . For example, if C = P1, then
ΩC

∼= O(−2).

Differentials pull back: any surjective morphism of curves f : C → C ′ induces a natural
map f∗ΩC ′ → ΩC.

2.2. The Riemann-Hurwitz formula. Whenever we invoke this formula (in this section),
we will assume that k is algebraically closed and characteristic 0. These conditions aren’t
necessary, but save us some extra hypotheses. Suppose f : C → C ′ is a dominant mor-
phism. Then it turns out f∗ΩC ′ ↪→ ΩC is an inclusion of invertible sheaves. (This is a
case when inclusions of invertible sheaves does not mean what people normally mean by
inclusion of line bundles, which are always isomorphisms.) Its cokernel is supported in
dimension 0:

0 → f∗ΩC ′ → ΩC → [dimension 0] → 0.

The divisor R corresponding to those points (with multiplicity), is called the ramification
divisor.

We can study this in local coordinates. We don’t have the technology to describe this
precisely yet, but you might still find this believable. If the map at q ∈ C ′ looks like
u 7→ un = t, then dt 7→ d(un) = nun−1du, so dt when pulled back vanishes to order
n − 1. Thus branching of this sort u 7→ un contributes n − 1 to the ramification divisor.
(More correctly, we should look at the map of Spec’s of discrete valuation rings, and then
u is a uniformizer for the stalk at q, and t is a uniformizer for the stalk at f(q), and t is
actually a unit times un. But the same argument works.)

Now in a recent exercise on pullbacks of invertible sheaves under maps of curves, we
know that a degree of the pullback of an invertible sheaf is the degree of the map times
the degree of the original invertible sheaf. Thus if d is the degree of the cover, deg ΩC =
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d deg ΩC ′ + deg R. Conclusion: if C → C ′ is a degree d cover of curves, then

2gc − 2 = d(2gC ′ − 2) + deg R

Here are some applications.

Example. When I drew a sample branched cover of one complex curve by another, I
showed a genus 2 curve covering a genus 3 curve. Show that this is impossible. (Hint:
deg R ≥ 0.)

Example: Hyperelliptic curves. Hyperelliptic curves are curves that are double covers of
P1

k. If they are genus g, then they are branched over 2g + 2 points, as each ramification
can happen to order only 1. (Caution: we are in characteristic 0!) You may already have
heard about genus 1 complex curves double covering P1, branched over 4 points.

Application 1. First of all, the degree of R is even: any cover of a curve must be branched
over an even number of points (counted with multiplicity).

Application 2. The only connected unbranched cover of P1
k is the isomorphism. Reason:

if deg R = 0, then we have 2 − 2gC = 2d with d ≥ 1 and gc ≥ 0, from which d = 1 and
gC = 0.

Application 3: Luroth’s theorem. Suppose g(C) = 0. Then from the Riemann-Hurwitz
formula, g(C ′) = 0. (Otherwise, if gC ′ were at least 1, then the right side of the Riemann-
Hurwitz formula would be non-negative, and thus couldn’t be −2, which is the left side.
This has a non-obvious algebraic consequence, by our identification of covers of curves
with field extensions (class 28 Theorem 1.5). Hence all subfields of k(x) containing k are
of the form k(y) where y = f(x). (Here we have the hypothesis where k is algebraically
closed. We’ll patch that later.) Kirsten said that an algebraic proof was given in Math 210.

E-mail address: vakil@math.stanford.edu
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Last day: The Leray spectral sequence. Beginning fun with curves: ΩC, and the
Riemann-Hurwitz formula.

Today: More fun with curves: Serre duality, criterion for closed immersion, series of
useful remarks, curves of genus 0 and 2

1. LAST DAY

Last day we began to talk about curves over a field k. Our standing assumptions will
be that a curve C is projective, geometrically integral and nonsingular over a field k.

(People happy to work over algebraically closed fields can continue to ignore the ad-
verb “geometrically”.)

I’m in the process of telling you a few facts that we will prove next quarter. We will use
these facts to prove lots of things about curves.

Last day I defined ΩC, sheaf of differentials on C. I really should have called it ΩC/k ,
to make clear that this sheaf on C depends on the structure morphism C → k. I stated
that ΩC/k is an invertible sheaf, and told you that we will soon see that has degree
deg ΩC = 2gc − 2 . I stated that differentials pullback under covers f : C → C ′ (i.e. that

there is a morphism f∗ΩC ′/k → ΩC/k), and if we are in characteristic 0, then this yields an

Date: Thursday, February 23, 2006. Minor correction June 25, 2007. c© 2005, 2006, 2007 by Ravi Vakil.
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inclusion of invertible sheaves, which yields 0 → f∗ΩC ′ → ΩC → R → 0, where R cor-
responds to the ramification divisor on C, which keeps track of the branching of C → C ′.
From this I claimed that we will deduce the Riemann-Hurwitz formula

2gC − 2 = d(2gC ′ − 2) + deg R

1.1. Serre duality. (We are not requiring k to be algebraically closed.) In general, nonsin-
gular varieties will have a special invertible sheaf KX which is the determinant of ΩX. This
invertible sheaf is called the canonical bundle, and will later be defined in much greater
generality. In our case, X = C is a curve, so KC = ΩC, and from here on in, we’ll use
KC instead of ΩC. The reason it is called the dualizing sheaf is because it arises in Serre
duality. Serre duality states that H1(C,K) ∼= k, or more precisely that there is a trace mor-
phism H1(C,K) → k that is an isomorphism. (Example: if C = P1, then we indeed have
h1(P1,O(−2)) = 1.)

Further, for any coherent sheaf F , the natural map

H0(C,F) ⊗k H1(C,K⊗ F∨) → H1(C,K)

is a perfect pairing. Thus in particular, h0(C,F) = h1(C,K ⊗ F∨). Recall we defined the
arithmetic genus of a curve to be h1(C,OC). Then h0(C,K) = g as well.

Recall that Riemann-Roch for a invertible sheaf L states that
h0(C,L) − h1(C,L) = degL − g + 1.

Applying this to L = K, we get
degK = h0(C,K)−h1(C,K)+g− 1 = h1(C,O)−h0(C,O)+g− 1 = g− 1+g− 1 = 2g− 2

as promised earlier.

1.2. A criterion for when a morphism is a closed immersion. We’ll also need a criterion
for when something is a closed immersion. To help set it up, let’s observe some facts
about closed immersions. Suppose f : X → Y is a closed immersion. Then f is projective,
and it is injective on points. This is not enough to ensure that it is a closed immersion,
as the example of the normalization of the cusp shows (Figure 1). Another example is
the Frobenius morphism from A1 to A1, given by k[t] → k[u], u → tp, where k has
characteristic p.

The additional information you need is that the tangent map is an isomorphism at all
closed points. (Exercise: show this is false in those two examples.)

1.3. Theorem. — Suppose k is an algebraically closed field, and f : X → Y is a projective morphism
of finite-type k-schemes that is injective on closed points and injective on tangent vectors of closed
points. Then f is a closed immersion.

The example of Spec C → Spec R shows that we need the hypothesis that k is alge-
braically closed.
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FIGURE 1. Projective morphisms that are injective on points need not be
closed immersions

FIGURE 2. We need the projective hypothesis in Theorem 1.3

We need the hypothesis of projective morphism, as shown by the following example
(which was described at the blackboard, see Figure 2). We map A

1 to the plane, so that its
image is a curve with one node. We then consider the morphism we get by discarding one
of the preimages of the node. Then this morphism is an injection on points, and is also
injective on tangent vectors, but it is not a closed immersion. (In the world of differential
geometry, this fails to be an embedding because the map doesn’t give a homeomorphism
onto its image.)

Suppose f(p) = q, where p and q are closed points. We will use the hypothesis that X

and Y are k-schemes where k is algebraically closed at only one point of the argument:
that the map induces an isomorphism of residue fields at p and q.
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(For those of you who are allergic to algebraically closed fields: still pay attention, as
we’ll use this to prove things about curves over k where k is not necessarily algebraically
closed.)

This is the hardest result of today. We will kill the problem in old-school French style:
death by a thousand cuts.

Proof. We may assume that Y is affine, say Spec B.

I next claim that f has finite fibers, not just finite fibers above closed points: the fiber
dimension for projective morphisms is upper-semicontinuous (Class 32 Exercise 2.3), so
the locus where the fiber dimension is at least 1 is a closed subset, so if it is non-empty,
it must contain a closed point of Y. Thus the fiber over any point is a dimension 0 finite
type scheme over that point, hence a finite set.

Hence f is a projective morphism with finite fibers, thus affine, and even finite (Class
32 Corollary 2.4).

Thus X is affine too, say Spec A, and f corresponds to a ring morphism B → A. We wish
to show that this is a surjection of rings, or (equivalently) of B-modules. We will show
that for any maximal ideal n of B, Bn → An is a surjection of Bn-modules. (This will show
that B → A is a surjection. Here is why: if K is the cokernel, so B → A → K → 0, then
we wish to show that K = 0. Now A is a finitely generated B-module, so K is as well,
being a homomorphic image of A. Thus Supp K is a closed set. If K 6= 0, then Supp K is
non-empty, and hence contains a closed point [n]. Then Kn 6= 0, so from the exact sequence
Bn → An → Kn → 0, Bn → An is not a surjection.)

If An = 0, then clearly Bn surjects onto An, so assume otherwise. I claim that An =

A⊗B Bn is a local ring. Proof: Spec An → Spec Bn is a finite morphism (as it is obtained by
base change from Spec A → Spec B), so we can use the going-up theorem. An 6= 0, so An

has a prime ideal. Any point p of Spec An maps to some point of Spec Bn, which has [n] in
its closure. Thus there is a point q in the closure of p that maps to [n]. But there is only
one point of Spec An mapping to [n], which we denote [m]. Thus we have shown that m

contains all other prime ideals of Spec An, so An is a local ring.

Injectivity of tangent vectors means surjectivity of cotangent vectors, i.e. n/n2
→ m/m2

is a surjection, i.e. n → m/m2 is a surjection. Claim: nAn = mAn. Reason: By Nakayama’s
lemma for the local ring An and the An-module mAn, we conclude that nAn = mAn.

Next apply Nakayama’s Lemma to the Bn-module An. The element 1 ∈ An gives a
generator for An/nAn = An/mAn, which equals Bn/nBn (as both equal k), so we conclude
that 1 also generates An as a Bn-module as desired. �

1.4. Exercise. Use this to show that the dth Veronese morphism from Pn
k , corresponding to

the complete linear series (see Class 22) |OP
n
k
(d)|, is a closed immersion. Do the same for

the Segre morphism from P
m
k ×Spec k P

n
k . (This is just for practice for using this criterion.
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This is a weaker result than we had before; we’ve earlier checked this over an arbitrary
base ring, and we are now checking it only over algebraically closed fields.)

2. A SERIES OF USEFUL REMARKS

Suppose now that L is an invertible sheaf on a curve C (which as always in this dis-
cussion is projective, geometrically integral and nonsingular, over a field k which is not
necessarily algebraically closed). I’ll give a series of small useful remarks that we will
soon use to great effect.

2.1. h0(C,L) = 0 if degL < 0. Reason: if there is a non-zero section, then the degree of
L can be interpreted as the number of zeros minus the number of poles. But there are no
poles, so this would have to be non-negative. A slight refinement gives:

2.2. h0(C,L) = 0 or 1 if degL = 0. This is because if there is a section, then the degree
of L is the number of zeros minus the number of poles. Then as there are no poles, there
can be no zeros. Thus the section (call it s) vanishes nowhere, and gives a trivialization
for the invertible sheaf. (Recall how this works: we have a natural bijection for any open
set Γ(U,L) ↔ Γ(U,OU), where the map from left to right is s ′ 7→ s ′/s, and the map from
right to left is f 7→ sf.) Thus if there is a section, L ∼= O. But we’ve already checked that
for a geometrically integral and nonsingular curve C, h0(C,L) = 1.

2.3. Suppose p is any closed point of degree 1. (In other words, the residue field of p is k.)
Then h0(C,L) − h0(C,L(−p)) = 0 or 1. Reason: consider 0 → OC(−p) → OC → Op → 0,
tensor with L (this is exact as L is locally free) to get

0 → L(−p) → L → L|p → 0.

Then h0(C,L|p) = 1, so as the long exact sequence of cohomology starts off

0 → H0(C,L(−p)) → H0(C,L) → H0(C,L|p),

we are done.

2.4. Suppose for this remark that k is algebraically closed. (In particular, all closed points
have degree 1 over k.) Then if h0(C,L) − h0(C,L(−p)) = 1 for all closed points p, then
L is base-point-free, and hence induces a morphism from C to projective space. (Note
that L has a finite-dimensional vector space of sections: all cohomology groups of all
coherent sheaves on a projective k-scheme are finite-dimensional.) Reason: given any p,
our equality shows that there exists a section of L that does not vanish at p.

2.5. Next, suppose p and q are distinct points of degree 1. Then h0(C,L) − h0(C,L(−p −

q)) = 0, 1, or 2 (by repeating the argument of 2.3 twice). If h0(C,L)−h0(C,L(−p−q)) = 2,
then necessarily

(1) h0(C,L) = h0(C,L(−p)) + 1 = h0(C,L(−q)) + 1 = h0(C,L(−p − q)) + 2.
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I claim that the linear system L separates points p and q, by which I mean that the corre-
sponding map f to projective space satisfies f(p) 6= f(q). Reason: there is a hyperplane of
projective space passing through p but not passing through q, or equivalently, there is a
section of L vanishing at p but not vanishing at q. This is because of the last equality in
(1).

2.6. By the same argument as above, if p is a point of degree 1, then h0(C,L)−h0(C,L(−2p)) =

0, 1, or 2. I claim that if this is 2, then map corresponds to L (which is already seen to be
base-point-free from the above) separates the tangent vectors at p. To show this, I need
to show that the cotangent map is surjective. To show surjectivity onto a one-dimensional
vector space, I just need to show that the map is non-zero. So I need to give a function on
the target vanishing at the image of p that pulls back to a function that vanishes at p to
order 1 but not 2. In other words, I want a section of L vanishing at p to order 1 but not 2.
But that is the content of the statement h0(C,L(−p)) − h0(C,L(−2p)) = 1.

2.7. Combining some of our previous comments: suppose C is a curve over an algebraically
closed field k, and L is an invertible sheaf such that for all closed points p and q, not
necessarily distinct, h0(C,L) − h0(C,L(−p − q)) = 2, then L gives a closed immersion into
projective space, as it separates points and tangent vectors, by Theorem 1.3.

2.8. We now bring in Serre duality. I claim that degL > 2g − 2 implies

h0(C,L) = degL − g − 1.

This is important — remember this! Reason: h1(C,L) = h0(C,K ⊗ L∨); but K ⊗ L∨ has
negative degree (as K has degree 2g − 2), and thus this invertible sheaf has no sections.
Thus Riemann-Roch gives us the desired result.

Exercise. Suppose L is a degree 2g−2 invertible sheaf. Show that it has g−1 or g sections,
and it has g sections if and only if L ∼= K.

2.9. We now come to our most important conclusion. Thus if k is algebraically closed,
then degL ≥ 2g implies that L is basepoint free (and hence determines a morphism to
projective space). Also, degL ≥ 2g + 1 implies that this is in fact a closed immersion.
Remember this! [k need not be algebraically closed.]

2.10. I now claim (for the people who like fields that are not algebraically closed) that the
previous remark holds true even if k is not algebraically closed. Here is why: suppose C is our
curve, and Ck := C⊗kk is the base change to the algebraic closure (which we are assuming
is connected and nonsingular), with π : Ck → C (which is an affine morphism, as it is
obtained by base change from the affine morphism Spec k → Spec k). Then H0(C,L)⊗kk ∼=
H0(Ck, π

∗L) for reasons I explained last day (see the first exercise on the class 33 notes,
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and also on problem set 15).
Ck

��

π
// C

��

Spec k // Spec k

Let s0, . . . , sn be a basis for the k-vector space H0(C,L); they give a basis for the k-vector
space H0(Ck, π

∗L). If L has degree at least 2g, then these sections have no common zeros
on Ck; but this means that they have no common zeros on C. If L has degree at least
2g+1, then these sections give a closed immersion Ck ↪→ P

n
k

. Then I claim that f : C → P
n
k

(given by the same sections) is also a closed immersion. Reason: we can check this on
each affine open subset U = Spec A ⊂ P

n
k . Now f has finite fibers, and is projective,

hence is a finite morphism (and in particular affine). Let Spec B = f−1(U). We wonder if
A → B is a surjection of rings. But we know that this is true upon base changing by k:
A ⊗k k → B ⊗k k is surjective. So we are done.

We’re now ready to take these facts and go to the races.

3. GENUS 0

3.1. Claim. — Suppose C is genus 0, and C has a k-valued point. Then C ∼= P
1
k.

Of course C automatically has a k-point if k is algebraically closed. Thus we see that all
genus 0 (integral, nonsingular) curves over an algebraically closed field are isomorphic to
P1.

If k is not algebraically closed, then C needn’t have a k-valued point: witness x2 + y2 +

z2 = 0 in P2
R

. We have already observed that this curve is not isomorphic to P1
R

, because it
doesn’t have an R-valued point.

Proof. Let p be the point, and consider L = O(p). Then degL = 1, so we can apply
what we know above: first of all, h0(C,L) = 2, and second of all, these two sections
give a closed immersion in to P

1
k. But the only closed immersion of a curve into P

1
k is the

isomorphism! �

As a fun bonus, we see that the weird real curve x2 +y2 + z2 = 0 in P2
R

has no divisors of
degree 1 over R; otherwise, we could just apply the above argument to the corresponding
line bundle.

Our weird curve shows us that over a non-algebraically closed field, there can be genus
0 curves that are not isomorphic to P1

k. The next result lets us get our hands on them as
well.

3.2. Claim. — All genus 0 curves can be described as conics in P2
k.

7



Proof. Any genus 0 curve has a degree −2 line bundle — the canonical bundle K. Thus
any genus 0 curve has a degree 2 line bundle: L = K∨. We apply our machinery to this
bundle: h0(C,L) = 3 ≥ 2g + 1, so this line bundle gives a closed immersion into P2.
[This proof is not complete if k = k, as the criterion we are using requires this hypothesis.
Exercise: Use §2.10 to give a complete proof.] �

3.3. Exercise. Suppose C is a genus 0 curve (projective, geometrically integral and non-
singular). Show that C has a point of degree at most 2.

We will use the following result later.

3.4. Claim. — Suppose C is not isomorphic to P1
k (with no restrictions on the genus of C), and L

is an invertible sheaf of degree 1. Then h0(C,L) < 2.

Proof. Otherwise, let s1 and s2 be two (independent) sections. As the divisor of zeros of
si is the degree of L, each vanishes at a single point pi (to order 1). But p1 6= p2 (or else
s1/s2 has no poles or zeros, i.e. is a constant function, i.e. s1 and s2 are dependent). Thus
we get a map C → P1 which is basepoint free. This is a finite degree 1 map of nonsingular
curves, which induces a degree 1 extension of function fields, i.e. an isomorphism of
function fields, which means that the curves are isomorphic. But we assumed that C is
not isomorphic to P1

k. �

4. GENUS ≥ 2

It might make most sense to jump to genus 1 at this point, but the theory of elliptic
curves is especially rich and beautiful, so I’ll leave it for the end.

In general, the curves have quite different behaviors (topologically, arithmetically, ge-
ometrically) depending on whether g = 0, g = 1, or g > 2. This trichotomy extends
to varieties of higher dimension. I gave a very brief discussion of this trichotomy for
curves. For example, arithmetically, genus 0 curves can have lots and lots of points, genus
1 curves can have lots of points, and by Faltings’ Theorem (Mordell’s Conjecture) any
curve of genus at least 2 has at most finitely many points. (Thus we knew before Wiles
that xn + yn = zn in P2 has at most finitely many solutions for n ≥ 4, as such curves have
genus

(

n−1

2

)

> 1.) Geometrically, Riemann surfaces of genus 0 are positively curved, Rie-
mann surfaces of genus 1 are flat, and Riemann surfaces of genus 1 are negatively curved.
We will soon see that curves of genus at least 2 have finite automorphism groups, while
curves of genus 1 have some automorphisms (a one-dimensional family), and (we’ve seen
earlier) curves of genus 1 (over an algebraically closed field) have a three-dimensional au-
tomorphism group.

4.1. Genus 2. Fix a curve C of genus 2. Then K is degree 2, and has 2 sections. I claim that
K is base-point-free. Otherwise, if p is a base point, then K(−p) is a degree 1 invertible
sheaf with 2 sections, and we just showed (Claim 3.4) that this is impossible. Thus we
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have a double cover of P1. Conversely, any double cover C → P1 arises from a degree
2 invertible sheaf with at least 2 sections, so by one of our useful facts, if g(C) = 2, this
invertible sheaf must be the canonical bundle (as the only degree 2 invertible sheaf on a
genus 2 curve with at least 2 sections is KC). Hence we have a natural bijection between
genus 2 curves and genus 2 double covers of P1.

We now specialize to the case where k = k, and the characteristic of k is 0. (All we will
need, once we actually prove the Riemann-Hurwitz formula, is that the characteristic
be distinct from 2.) Then the Riemann-Hurwitz formula shows that the cover is branched
over 6 points. We will see next day that a double cover is determined by its branch points.
Hence genus 2 curves are in bijection with unordered sextuples of points on P1. There is
thus a 3-dimensional family of genus 2 curves — we have found them all!

(This is still a little imprecise; we would like to say that the moduli space of genus 2

curves is of dimension 3, but we haven’t defined what we mean by moduli space!)

More generally, we may see next week (admittedly informally) that if g > 1, the curves
of genus g “form a family” of dimension 3g − 3. (If we knew the meaning of “moduli
space”, we would say that the dimension of the moduli space of genus g curves Mg is
3g − 3.) What goes wrong in genus 0 and 1? The following table (as yet unproved by us!)
might help.

genus dimension of family of curves dimension of automorphism group of curve
0 0 3

1 1 1

2 3 0

3 6 0

4 9 0

5 12 0
... ... ...

You can probably see the pattern. This is a little like the behavior of the Hilbert function:
the dimension of the moduli space is “eventually polynomial”, so there is something that
is better-behaved that is an alternating sum, and once the genus is sufficiently high, the
“error term” becomes zero. The interesting question then becomes: why is the “right”
notion the second column of the table minus the third? (In fact the second column is
h1(C, TC), where TC is the tangent bundle — not yet defined — and the third column is
h0(C, TC). All other cohomology groups of the tangent bundle vanish by dimensional
vanishing.)

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 34 CRIB
SHEET

RAVI VAKIL

This is a summary of useful facts we proved or assumed. We will use them in the next
two classes.

All curves C are projective, and geometrically integral and nonsingular over a field k.

There is an invertible sheaf (rank bundle) K, called the dualizing sheaf; it is also the sheaf
of differentials (in this guise it is called ΩC/k), and the cotangent bundle. degK = 2g − 2.

The Riemann-Hurwitz formula is 2gC−2 = d(2gC′ −2)+deg R, where R is the ramification
divisor.

Serre duality. There is an isomorphism H0(C,K)
∼

// k For any coherent sheaf F , the

natural map

H0(C,F) ⊗k H1(C,K⊗ F∨) → H0(C,K)

is a perfect pairing, so in particular, h0(C,F) = h1(C,K⊗F∨). (As g := h1(C,OC), we get
h0(C,K) = g as well.) Hence Riemann-Roch now states:

h0(C,L) − h1(C,L) = degL − g + 1.

Applying this to L = K, we get degK = 2g − 2 (promised earlier).

Suppose now that L is an invertible sheaf on C.

0.1. h0(C,L) = 0 if degL < 0. h0(C,L) = 0 or 1 if degL = 0.

0.2. Suppose p is any closed point of degree 1. (In other words, the residue field of p is k.)
Then h0(C,L) − h0(C,L(−p)) = 0 or 1.

0.3. Suppose for this remark that k is algebraically closed. (In particular, all closed points
have degree 1 over k.) Then if h0(C,L) − h0(C,L(−p)) = 1 for all closed points p, then L

is base-point-free, and hence induces a morphism from C to projective space.

0.4. Suppose p and q are distinct points of degree 1. Then h0(C,L)−h0(C,L(−p−q)) = 0,
1, or 2. If h0(C,L) − h0(C,L(−p − q)) = 2, then L separates points p and q, by which I
mean that the corresponding map f to projective space satisfies f(p) 6= f(q).

Date: Thursday, February 23, 2006.
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0.5. If p is a point of degree 1, then h0(C,L)− h0(C,L(−2p)) = 0, 1, or 2. If it is 2, then the
map corresponding to L separates the tangent vectors at p.

0.6. Combining some of our previous comments: suppose C is a curve over an algebraically
closed field k, and L is an invertible sheaf such that for all closed points p and q, not
necessarily distinct, h0(C,L) − h0(C,L(−p − q)) = 2, then L gives a closed immersion into
projective space.

0.7. We now bring in Serre duality. degL > 2g − 2 implies

h0(C,L) = degL − g − 1.

If L is a degree 2g − 2 invertible sheaf, then L has g − 1 or g sections, and it has g sections
if and only if L ∼= K.

0.8. Our most important conclusion. degL ≥ 2g implies that L is basepoint free (and hence
determines a morphism to projective space). Also, degL ≥ 2g + 1 implies that this is in
fact a closed immersion. Remember this!

0.9. Suppose C is not isomorphic to P
1
k (with no restrictions on the genus of C), and L is

an invertible sheaf of degree 1. Then h0(C,L) < 2.

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 35

RAVI VAKIL

CONTENTS

1. Hyperelliptic curves 1
2. Curves of genus 3 3
3. Genus at least 3 4
4. Genus 1 6

Last day: More fun with curves: Serre duality, criterion for closed immersion, a series
of useful remarks, curves of genus 0 and 2.

Today: hyperelliptic curves; curves of genus at least 2; elliptic curves take 1.

Last day we started studying curves in detail, using things we’d proved. Today, we’ll
continue to use these things. (See the “Class 34 crib sheet” for a reminder of what we
know.)

1. HYPERELLIPTIC CURVES

As usual, we begin by working over an arbitrary field k, and specializing only when
we need to. A curve C of genus at least 2 is hyperelliptic if it admits a degree 2 cover of P1.
This map is often called the hyperelliptic map.

Equivalently, C is hyperelliptic if it admits a degree 2 invertible sheaf L with h0(C,L) =

2.

1.1. Exercise.. Verify that these notions are the same. Possibly in the course of doing this,
verify that if C is a curve, and L has a degree 2 invertible sheaf with at least 2 (linearly
independent) sections, then L has precisely two sections, and that this L is base-point free
and gives a hyperelliptic map.

The degree 2 map C → P1 gives a degree 2 extension of function fields FF(C) over
FF(P1) ∼= k(t). If the characteristic is not 2, this extension is necessarily Galois, and the
induced involution on C is called the hyperelliptic involution.

Date: Tuesday, February 28, 2006. Superficial update June 25, 2007. c© 2005, 2006, 2007 by Ravi Vakil.
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1.2. Proposition. — If L corresponds to a hyperelliptic cover C → P1, then L⊗(g−1) ∼= KC.

Proof. Compose the hyperelliptic map with the (g − 1)th Veronese map:

C
L

// P1
O

P1(g−1)
// Pg−1.

The composition corresponds to L⊗(g−1). This invertible sheaf has degree 2g − 2, and the
image is nondegenerate in Pg−1, and hence has at least g sections. But one of our useful
facts (and indeed an exercise) was that the only invertible sheaf of degree 2g − 2 with (at
least) g sections is the canonical sheaf. �

1.3. Proposition. — If a curve (of genus at least 2) is hyperelliptic, then it is hyperelliptic in “only
one way”. In other words, it admits only one double cover of P1.

Proof. If C is hyperelliptic, then we can recover the hyperelliptic map by considering
the canonical map: it is a double cover of a degree g − 1 rational normal curve (by the
previous Proposition), and this double cover is the hyperelliptic cover (also by the proof
of the previous Proposition). �

Next, we invoke the Riemann-Hurwitz formula. We assume the char k = 0, and k = k,
so we can invoke this black box. However, when we actually discuss differentials, and
prove the Riemann-Hurwitz formula, we will see that we can just require char k 6= 2 (and
k = k).

The Riemann-Hurwitz formula implies that hyperelliptic covers have precisely 2g + 2

(distinct) branch points. We will see in a moment that the branch points determine the
curve (Claim 1.4).

Assuming this, we see that hyperelliptic curves of genus g correspond to precisely 2g+

2 points on P1 modulo S2g+2, and modulo automorphisms of P1. Thus “the space of
hyperelliptic curves” has dimension

2g + 2 − dim Aut P1 = 2g − 1.

(As usual, this is not a well-defined statement, because as yet we don’t know what we
mean by “the space of hyperelliptic curves”. For now, take it as a plausibility statement.)
If we believe that the curves of genus g form a family of dimension 3g − 3, we have
shown that “most curves are not hyperelliptic” if g > 2 (or on a milder note, there exists
a hyperelliptic curve of each genus g > 2).

1.4. Claim. — Assume char k 6= 2 and k = k. Given n distinct points on P1, there is precisely
one cover branched at precisely these points if n is even, and none if n is odd.

In particular, the branch points determine the hyperelliptic curve. (We also used this
fact when discussing genus 2 curves last day.)
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Proof. Suppose we have a double cover of A1, C → A1, where x is the coordinate on
A1. This induces a quadratic field extension K over k(x). As char k 6= 2, this extension is
Galois. Let σ be the hyperelliptic involution. Let y be an element of K such that σ(y) = −y,
so 1 and y form a basis for K over the field k(x) (and are eigenvectors of σ). Now y2 ∈ k(x),
so we can replace y by an appropriate k(x)-multiple so that y2 is a polynomial, with no
repeated factors, and monic. (This is where we use the hypothesis that k is algebraically
closed, to get leading coefficient 1.) Thus y2 = xn +an−1x

n−1 + · · ·+a0. The branch points
correspond to those values of x for which there is exactly one value of y, i.e. the roots of
the polynomial. As we have no double roots, the curve is nonsingular. Let this cover be
C ′

→ A1. Both C and C ′ are normalizations of A1 in this field extension, and are thus
isomorphic. Thus every double cover can be written in this way, and in particular, if the
branch points are r1, . . . , rn, the cover is y2 = (x − r1) · · · (x − rn).

We now consider the situation over P1. A double cover can’t be branched over an odd
number of points by the Riemann-Hurwitz formula. Given an even number of points r1,
. . . , rn in P1, choose an open subset A1 containing all n points. Construct the double cover
of A1 as explained in the previous paragraph: y2 = (x − r1) · · · (x − rn). Then take the
normalization of P1 in this field extension. Over the open A1, we recover this cover. We
just need to make sure we haven’t accidentally acquired a branch point at the missing
point ∞ = P1 − A1. But the total number of branch points is even, and we already have
an even number of points, so there is no branching at ∞. �

Remark. If k is not algebraically closed (but of characteristic not 2), the above argument
shows that if we have a double cover of A1, then it is of the form y2 = af(x), where f

is monic, and a ∈ k∗/(k∗)2. So (assuming the field doesn’t contain all squares) a double
cover does not determine the same curve. Moreover, see that this failure is classified
by k∗/(k∗)2. Thus we have lots of curves that are not isomorphic over k, but become
isomorphic over k. These are often called twists of each other.

(In particular, even though haven’t talked about elliptic curves yet, we definitely have
two elliptic curves over Q with the same j-invariant, that are not isomorphic.)

2. CURVES OF GENUS 3

Suppose C is a curve of genus 3. Then K has degree 2g − 2 = 4, and has g = 3 sections.

2.1. Claim. — K is base-point-free, and hence gives a map to P2.

Proof. We check base-point-freeness by working over the algebraic closure k. For any
point p, by Riemann-Roch,

h0(C,K(−p)) − h0(C,O(p)) = deg(K(−p)) − g + 1 = 3 − 3 + 1 = 1.

But h0(C,O(p)) = 0 by one of our useful facts, so
h0(C,K(−p)) = 2 = h0(C,K) − 1.

Thus p is not a base-point of K, so K is base-point-free. �
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The next natural question is: Is this a closed immersion? Again, we can check over
algebraic closure. We use our “closed immersion test” (again, see our useful facts). If it
isn’t a closed immersion, then we can find two points p and q (possibly identical) such
that

h0(C,K) − h0(C,K(−p − q)) = 2,

i.e. h0(C,K(−p − q)) = 2. But by Serre duality, this means that h0(C,O(p + q)) = 2. We
have found a degree 2 divisor with 2 sections, so C is hyperelliptic. (Indeed, I could have
skipped that sentence, and made this observation about K(−p − q), but I’ve done it this
way in order to generalize to higher genus.) Conversely, if C is hyperelliptic, then we
already know that K gives a double cover of a nonsingular conic in P2 (also known as a
rational normal curve of degree 2).

Thus we conclude that if C is not hyperelliptic, then the canonical map describes C as
a degree 4 curve in P2.

Conversely, any quartic plane curve is canonically embedded. Reason: the curve has
genus 3 (we can compute this — see our discussion of Hilbert functions), and is mapped
by an invertible sheaf of degree 4 with 3 sections. Once again, we use the useful fact
saying that the only invertible sheaf of degree 2g − 2 with g sections is K.

Exercise. Show that the nonhyperelliptic curves of genus 3 form a family of dimension
6. (Hint: Count the dimension of the family of nonsingular quartics, and quotient by
Aut P2 = PGL(3).)

The genus 3 curves thus seem to come in two families: the hyperelliptic curves (a fam-
ily of dimension 5), and the nonhyperelliptic curves (a family of dimension 6). This is
misleading — they actually come in a single family of dimension 6.

In fact, hyperelliptic curves are naturally limits of nonhyperelliptic curves. We can
write down an explicit family. (This next paragraph will necessarily require some hand-
waving, as it involves topics we haven’t seen yet.) Suppose we have a hyperelliptic curve
branched over 2g + 2 = 8 points of P1. Choose an isomorphism of P1 with a conic in P2.
There is a nonsingular quartic meeting the conic at precisely those 8 points. (This requires
Bertini’s theorem, so I’ll skip that argument.) Then if f is the equation of the conic, and
g is the equation of the quartic, then f2 + t2g is a family of quartics that are nonsingular
for most t (nonsingular is an open condition as we will see). The t = 0 case is a double
conic. Then it is a fact that if you normalize the family, the central fiber (above t = 0)
turns into our hyperelliptic curve. Thus we have expressed our hyperelliptic curve as a
limit of nonhyperelliptic curves.

3. GENUS AT LEAST 3

We begin with two exercises in general genus, and then go back to genus 4.

Exercise Suppose C is a genus g curve. Show that if C is not hyperelliptic, then the canoni-
cal bundle gives a closed immersion C ↪→ Pg−1. (In the hyperelliptic case, we have already

4



seen that the canonical bundle gives us a double cover of a rational normal curve.) Hint:
follow the genus 3 case. Such a curve is called a canonical curve.

Exercise. Suppose C is a curve of genus g > 1, over a field k that is not algebraically
closed. Show that C has a closed point of degree at most 2g − 2 over the base field. (For
comparison: if g = 1, there is no such bound!)

We next consider nonhyperelliptic curves C of genus 4. Note that degK = 6 and
h0(C,K) = 4, so the canonical map expresses C as a sextic curve in P3. We shall see
that all such C are complete intersections of quadric surfaces and cubic surfaces, and vice
versa.

By Riemann-Roch, K⊗2 has degK⊗2 − g + 1 = 12 − 4 + 1 = 9 sections. That’s one less
than dim Sym2 Γ(C,K) =

(

4+1

2

)

. Thus there is at least one quadric in P3 that vanishes on
our curve C. Translation: C lies on at least on quadric Q. Now quadrics are either double
planes, or the union of two planes, or cones, or nonsingular quadrics. (They corresponds
to quadric forms of rank 1, 2, 3, and 4 respectively.) Note that C can’t lie in a plane, so Q

must be a cone or nonsingular. In particular, Q is irreducible.

Now C can’t lie on two (distinct) such quadrics, say Q and Q ′. Otherwise, as Q and Q ′

have no common components (they are irreducible and not the same!), Q ∩ Q ′ is a curve
(not necessarily reduced or irreducible). By Bezout’s theorem, it is a curve of degree 4.
Thus our curve C, being of degree 6, cannot be contained in Q ∩ Q ′.

We next consider cubics. By Riemann-Roch, K⊗3 has degK⊗3 − g + 1 = 18 − 4 + 1 = 15

sections. Now dim Sym3 Γ(C,K) has dimension
(

4+2

3

)

= 20. Thus C lies on at least a 5-
dimensional vector space of cubics. Admittedly 4 of them come from multiplying the
quadric Q by a linear form (?w + ?x + ?y + ?z). But hence there is still one cubic K whose
underlying form is not divisible by the quadric form Q (i.e. K doesn’t contain Q.) Then K

and Q share no component, so K ∩ Q is a complete intersection. By Bezout’s theorem, we
obtain a curve of degree 6. Our curve C has degree 6. This suggests that C = K ∩ Q. In
fact, K∩Q and C have the same Hilbert polynomial, and C ⊂ K∩Q. Hence C = K∩Q by
the following exercise.

Exercise. Suppose X ⊂ Y ⊂ Pn are a sequence of closed subschemes, where X and Y

have the same Hilbert polynomial. Show that X = Y. Hint: consider the exact sequence

0 → IX/Y → OY → OX → 0.

Show that if the Hilbert polynomial of IX/Y is 0, then IX/Y must be the 0 sheaf.

We now consider the converse, and who that any nonsingular complete intersection C

of a quadric surface with a cubic surface is a canonically embedded genus 4 curve. It is not
hard to check that it has genus 3 (again, using our exercises involving Hilbert functions).
Exercise. Show that OC(1) has 4 sections. (Translation: C doesn’t lie in a hyperplane.)
Hint: long exact sequences! Again, the only degree 2g − 2 invertible sheaf with g sections
is the canonical sheaf, so OC(1) ∼= KC, and C is indeed canonically embedded.

5



Exercise. Conclude that nonhyperelliptic curves of genus 4 “form a family of dimension
9 = 3g − 3”. (Again, this isn’t a mathematically well-formed question. So just give a
plausibility argument.)

On to genus 5!

Exercise. Suppose C is a nonhyperelliptic genus 5 curve. The canonical curve is degree
8 in P4. Show that it lies on a three-dimensional vector space of quadrics (i.e. it lies on 3

independent quadrics). Show that a nonsingular complete intersection of 3 quadrics is a
canonical genus 5 curve.

In fact a canonical genus 5 is always a complete intersection of 3 quadrics.

Exercise. Show that the complete intersections of 3 quadrics in P4 form a family of
dimension 12 = 3g − 3.

This suggests that the nonhyperelliptic curves of genus 5 form a dimension 12 family.

So we’ve managed to understand curves of genus up to 5 (starting with 3) by thinking
of canonical curves as complete intersections. Sadly our luck has run out.

Exercise. Show that if C ⊂ Pg−1 is a canonical curve of genus g ≥ 6, then C is not a
complete intersection. (Hint: Bezout.)

4. GENUS 1

Finally, we come to the very rich case of curves of genus 1.

Note that K is an invertible sheaf of degree 2g − 2 = 0 with g = 1 section. But the only
degree 0 invertible sheaf with a section is the trivial sheaf, so we conclude that K ∼= O.

Next, note that if degL > 0, then Riemann-Roch and Serre duality gives
h0(C,L) = h0(C,L) − h0(C,K⊗ L∨) = h0(C,L) − h0(C,L∨) = degL

as an invertible sheaf L∨ of negative degree necessarily has no sections.

An elliptic curve is a genus 1 curve E with a choice of k-valued point p. (Note: it is not
the same as a genus 1 curve — some genus 1 curves have no k-valued points. However,
if k = k, then any closed point is k-valued; but still, the choice of a closed point should
always be considered part of the definition of an elliptic curve.)

Note that OE(2p) has 2 sections, so the argument given in the hyperelliptic section
shows that E admits a double cover of P1. One of the branch points is 2p: one of the
sections of OE(2p) vanishes to p of order 2, so there is a point of P1 consists of p (with
multiplicity 2). Assume now that k = k, so we can use the Riemann-Hurwitz formula.
Then the Riemann-Hurwitz formula shows that E has 4 branch points (p and three others).
Conversely, given 4 points in P1, we get a map (y2 = · · · ). This determines C (as shown
in the hyperelliptic section). Thus elliptic curves correspond to 4 points in P1, where one
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is marked p, up to automorphisms of P1. (Equivalently, by placing p at ∞, elliptic curves
correspond to 3 points in A1, up to affine maps x 7→ ax + b.)

If the three other points are temporarily labeled q1, q2, q3, there is a unique automor-
phism of P1 taking p, q1, q2 to (∞, 0, 1) respectively (as Aut P1 is three-transitive). Suppose
that q3 is taken to some number λ under this map. Notice that λ 6= 0, 1, ∞.

• If we had instead sent p, q2, q1 to (∞, 0, 1), then q3 would have been sent to 1 − λ.
• If we had instead sent p, q1, q3 to (∞, 0, 1), then q2 would have been sent to 1/λ.
• If we had instead sent p, q3, q1 to (∞, 0, 1), then q2 would have been sent to 1 −

1/λ = (λ − 1)/λ.
• If we had instead sent p, q2, q3 to (∞, 0, 1), then q2 would have been sent to 1/(1−

λ).
• If we had instead sent p, q3, q2 to (∞, 0, 1), then q2 would have been sent to 1 −

1/(1 − λ) = λ/(λ − 1).

Thus these six values (in bijection with S3) yield the same elliptic curve, and this elliptic
curve will (upon choosing an ordering of the other 3 branch points) yield one of these six
values.

Thus the elliptic curves over k corresponds to k-valued points of P1 − {0, 1, λ}, modulo
the action of S3 on λ given above. Consider the subfield of k(λ) fixed by S3. By Luroth’s
theorem, it must be of the form k(j) for some j ∈ k(λ). Note that λ should satisfy a sextic
polynomial over k(λ), as for each j-invariant, there are six values of λ in general.

At this point I should just give you j:

j = 28 (λ2 − λ + 1)3

λ2(λ − 1)2
.

But this begs the question: where did this formula come from? How did someone think
of it?

Far better is to guess what j is. We want to come up with some j(λ) such that j(λ) =

j(1/λ) = · · · . Hence we want some expression in λ that is invariant under this S3-action.
A silly choice would be the product of the six numbers λ(1/λ) · · · as this is 1.

A better idea is to add them all together. Unfortunately, if you do this, you’ll get 3.
(Here is one reason to realize this can’t work: if you look at the sum, you’ll realize that
you’ll get something of the form “degree at most 3” divided by “degree at most 2” (before
cancellation). Then if j ′ = p(λ)/q(λ), then λ satisfies (at most) a cubic over j. But we said
that λ should satisfy a sextic over j ′. The only way we avoid a contradiction is if j ′ ∈ k.

Our next attempt is to add up the six squares. When you do this by hand (it isn’t hard),
you get

j ′′ =
2λ6 − 6λ5 + 9λ4 − 8λ3 + 9λ2 − 6λ + 2

λ2(λ − 1)2
.
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This works just fine: k(j) ∼= k(j ′′). If you really want to make sure that I’m not deceiving
you, you can check (again by hand) that

2j/28 =
2λ6 − 6λ5 + 12λ4 − 14λ3 + 12λ2 − 6λ + 2

λ2(λ − 1)2
.

The difference is 3.
E-mail address: vakil@math.stanford.edu

8



FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 36

RAVI VAKIL

CONTENTS

1. Back to elliptic curves 2
1.1. Degree 3 2
2. Fun counterexamples using elliptic curves 6
3. More serious stuff 7

Last day: More fun with curves: hyperelliptic curves; curves of genus at least 2;
elliptic curves take 1.

Today: elliptic curves; the Picard variety; “the moduli space of curves has dimension
3g − 3.”

This is the last class of the quarter! We’ll finish off using what we know (and a little of
what we’ll know soon) to learn a great deal about curves.

There will be one more homework out early next week, due Thursday of the week after,
covering this week’s notes. We may well have a question-and-answer question on the last
morning of class.

Once again, I’m going to use those important facts that we proved a couple of days ago,
so I’ll refer you to the class 34 crib sheet.

Let me first give you an exercise I should have given you last day.

Exercise. (a) Suppose C is a projective curve. Show that C − p is affine. (Hint: show that
n � 0, O(np) gives an embedding of C into some projective space P

m, and that there is
some hyperplane H meeting C precisely at p. Then C−p is a closed subscheme of Pn −H.)
(b) If C is a geometrically integral nonsingular curve over a field k (i.e. all of our standing
assumptions, minus projectivity), show that it is projective or affine.

Date: Thursday, March 2, 2006. Minor update January 30, 2007. c© 2005, 2006 by Ravi Vakil.
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1. BACK TO ELLIPTIC CURVES

We’re in the process of studying elliptic curves, i.e. curves E (projective, geometrically
integral and nonsingular, over a field k) of genus 1, with a choice of a k-valued point p.
(It is typical to use the letter E for the curve rather than C.)

So far we have seen that they admit double covers of P1, and that if k = k, then the
elliptic curves are classified by the j-invariant. The double cover corresponded to the
invertible sheaf OE(2p). We’ll now consider OE(np) for larger n.

1.1. Degree 3. Consider the degree 3 invertible sheaf OE(3p). We consult our useful facts.
By Riemann-Roch, h0(E,OE(3p)) = deg(3p)−g+ 1 = 3. As deg E > 2g, this gives a closed
immersion. Thus we have a closed immersion E ↪→ P2

k as a cubic curve. Moreover, there is
a line in P2

k meeting E at point p with multiplicity 3. (Remark: a line in the plane meeting
a smooth curve with multiplicity at least 2 is said to be a tangent line. A line in the plane
meeting a smooth curve with multiplicity at least 3 is said to be a flex line.)

We can choose projective coordinates on P2
k so that p maps to [0; 1; 0], and the flex line

is the line at infinity z = 0. Then the cubic is of the following form:

?x3 + 0x2y + 0xy2 + 0y3

+ ?x2z + ?xyz + ?y2z

+ ?xz2 + ?yz2

+ ?z3 = 0

The co-efficient of x is not 0 (or else this cubic is divisible by z). We can scale x so that
the coefficient of x3 is 1. The coefficient of y2z is not 0 either (or else this cubic is singular
at x = z = 0). As k is algebraically closed, we can scale y so that the coefficient of y2z

is 1. (More precisely, we are changing variables, say y ′ = ay for some a ∈ k.) If the
characteristic of k is not 2, then we can then replace y by y+?x+?z so that the coefficients
of xyz and yz2 are 0, and if the characteristic of k is not 3, we can replace x by x+?z so that
the coefficient of x2z is also 0. In conclusion, if k is algebraically closed of characteristic
not 2 or 3, we can write our elliptic curve in the form

y2z = x3 + ax2z + bz3.

This is called Weierstrass normal form. (If only some of the “bonus hypotheses” k = k,
char k 6= 2, 3 is true, then we can perform only some of the reductions of course.)

Notice that we see the hyperelliptic description of the curve (by setting z = 1, or more
precisely, by working in the distinguished open set z 6= 0 and using inhomogeneous
coordinates). In particular, we can compute the j-invariant.
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Here is the geometric explanation of why the double cover description is visible in the
cubic description.

I drew a picture of the projective plane, showing the cubic, and where it met the z-axis
(the line at infinity) — where the z-axis and x-axis meet — it has a flex there. I drew
the lines through that point — vertical lines. Equivalently, you’re just taking 2 of the 3

sections: x and z. These are two sections of O(3p), but they have a common zero — a base
point at p. So you really get two sections of O(2p).

Exercise. Show that O(4p) embeds E in P3 as the complete intersection of two quadrics.

1.2. The group law.

1.3. Theorem. — The closed points of E are in natural bijection with Pic0(E), via x ↔ x − p. In
particular, as Pic0(E) is a group, we have endowed the closed points of E with a group structure.

For those of you familiar with the complex analytic picture, this isn’t surprising: E is
isomorphic to the complex numbers modulo a lattice: E ∼= C/Λ.

This is currently just a bijection of sets. Given that E has a much richer structure (it has
a generic point, and the structure of a variety), this is a sign that there should be a way of
defining some scheme Pic0(E), and that this should be an isomorphism of schemes.

Proof. For injectivity: O(x − p) ∼= O(y − p) implies O(x − y) ∼= O. But as E is not genus 0,
this is possible only if x = y.

For surjectivity: any degree 1 invertible sheaf has a section, so if L is any degree 0

invertible sheaf, then O(L(p)) ∼= O(x) for some x. �

Note that more naturally, Pic1(E) is in bijection with the points of E (without any choice
of point p).

From now on, we will conflate closed points of E with degree 0 invertible sheaves on E.

Remark. The 2-torsion points in the group are the branch points in the double cover!
Reason: q is a 2-torsion point if and only if 2q ∼ 2p if and only if there is a section of
O(2p) vanishing at q to order 2. (This is characteristic-independent.) Now assume that
the characteristic is 0. (In fact, we’ll only be using the fact that the characteristic is not
2.) By the Riemann-Hurwitz formula, there are 3 non-trivial torsion points. (Again, given
the complex picture E ∼= C/Λ, this isn’t surprising.)

Follow-up remark. An elliptic curve with full level n-structure is an elliptic curve with an
isomorphism of its n-torsion points with (Z/n)2. (This notion will have problems if n is
divisible by char k.) Thus an elliptic curve with full level 2 structure is the same thing as
an elliptic curve with an ordering of the three other branch points in its degree 2 cover
description. Thus (if k = k) these objects are parametrized by the λ-line (see the discussion
last day).
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Follow-up to the follow-up. There is a notion of moduli spaces of elliptic curves with full
level n structure. Such moduli spaces are smooth curves (where this is interpreted appro-
priately), and have smooth compactifications. A weight k level n modular form is a section
of K⊗k where K is the canonical sheaf of this “modular curve”.

But let’s get back down to earth.

1.4. Proposition. — There is a morphism of varieties E → E sending a (degree 1) point to its
inverse.

In other words, the “inverse map” in the group law actually arises from a morphism
of schemes — it isn’t just a set map. This is another clue that Pic0(E) really wants to be a
scheme.

Proof. It is the hyperelliptic involution y 7→ −y! Here is why: if q and r are “hyperelliptic
conjugates”, then q + r ∼ 2p = 0. �

We can describe addition in the group law using the cubic description. (Here a picture
is absolutely essential, and at some later date, I hope to add it.) To find the sum of q and
r on the cubic, we draw the line through q and r, and call the third point it meets s. Then
we draw the line between p and s, and call the third point it meets t. Then q + r = t.
Here’s why: q + r + s = p + s + t gives (q − p) + (r − p) = (s − p).

(When the group law is often defined on the cubic, this is how it is done. Then you
have to show that this is indeed a group law, and in particular that it is associative. We
don’t need to do this — Pic0 E is a group, so it is automatically associative.)

Note that this description works in all characteristics; we haven’t required the cubic to
be in Weierstrass normal form.

1.5. Proposition. — There is a morphism of varieties E × E → E that on degree 1 points sends
(q, r) to q + r.

“Proof”. We just have to write down formulas for the construction on the cubic. This
is no fun, so I just want to convince you that it can be done, rather than writing down
anything explicit. They key idea is to define another map E × E → E, where if the input
is (a, b), the output is the third point where the cubic meets the line, with the natural
extension if the line doesn’t meet the curve at three distinct points. Then we can use this
to construct addition on the cubic. �

Aside: Discussion on group varieties and group schemes.

A group variety X over k is something that can be defined as follows: We are given an
element e ∈ X(k) (a k-valued point of X), and maps i : X → X, m : X×X → X. They satisfy
the hypotheses you’d expect from the definition of a group.
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(i) associativity:

X × X × X
(m,id)

//

(id,m)

��

X × X

m

��

X × X
m

// X

commutes.

(ii) X
e,id

// X × X
m

// X and X
id,e

// X × X
m

// X are both the identity.

(iii) X
i,id

// X × X
m

// X and X
id,i

// X × X
m

// X are both e.

More generally, a group scheme over a base B is a scheme X → B, with a section e : B → X,
and B-morphisms i : X → X, m : X ×B X → X, satisfying the three axioms above.

More generally still, a group object in a category C is the above data (in a category C),
satisfying the same axioms. The e map is from the final object in the category to the
group object.

You can check that a group object in the category of sets is in fact the same thing as a
group. (This is symptomatic of how you take some notion and make it categorical. You
write down its axioms in a categorical way, and if all goes well, if you specialize to the
category of sets, you get your original notion. You can apply this to the notion of “rings”
in an exercise below.)

1.6. The functorial description. It is often cleaner to describe this in a functorial way. Notice
that if X is a group object in a category C, then for any other element of the category, the
set Hom(Y, X) is a group. Moreover, given any Y1 → Y2, the induced map Hom(Y2, X) →

Hom(Y1, X) is group homomorphism.

We can instead define a group object in a category to be an object X, along with mor-
phisms m : X×X → X, i : X → X, and e : final object → X, such that these induce a natural
group structure on Hom(Y, X) for each Y in the category, such that the forgetful maps are
group homomorphisms. This is much cleaner!

Exercise. Verify that the axiomatic definition and the functorial definition are the same.

Exercise. Show that (E, p) is a group scheme. (Caution! we’ve stated that only the closed
points form a group — the group Pic0. So there is something to show here. The main idea
is that with varieties, lots of things can be checked on closed points. First assume that
k = k, so the closed points are dimension 1 points. Then the associativity diagram is
commutative on closed points; argue that it is hence commutative. Ditto for the other
categorical requirements. Finally, deal with the case where k is not algebraically closed,
by working over the algebraic closure.)

We’ve seen examples of group schemes before. For example, A1
k is a group scheme

under addition. Gm = Spec k[t, t−1] is a group scheme.
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Easy exercise. Show that A1
k is a group scheme under addition, and Gm is a group scheme

under multiplication. You’ll see that the functorial description trumps the axiomatic de-
scription here! (Recall that Hom(X, A1

k) is canonically Γ(X,OX), and Hom(X, Gm) is canon-
ically Γ(X,OX)∗.)

Exercise. Define the group scheme GL(n) over the integers.

Exercise. Define µn to be the kernel of the map of group schemes Gm → Gm that is
“taking nth powers”. In the case where n is a prime p, which is also char k, describe µp.
(I.e. how many points? How “big” = degree over k?)

Exercise. Define a ring scheme. Show that A1
k is a ring scheme.

1.7. Hopf algebras. Here is a notion that we’ll certainly not use, but it is easy enough to
define now. Suppose G = Spec A is an affine group scheme, i.e. a group scheme that is an
affine scheme. The categorical definition of group scheme can be restated in terms of the
ring A. Then these axioms define a Hopf algebra. For example, we have a “comultiplication
map” A → A ⊗ A. Exercise. As A

1
k is a group scheme, k[t] has a Hopf algebra structure.

Describe the comultiplication map k[t] → k[t] ⊗k k[t].

2. FUN COUNTEREXAMPLES USING ELLIPTIC CURVES

We have a morphism (×n) : E → E that is “multiplication by n”, which sends p to
np. If n = 0, this has degree 0. If n = 1, it has degree 1. Given the complex picture of a
torus, you might not be surprised that the degree of ×n is n2. If n = 2, we have almost
shown that it has degree 4, as we have checked that there are precisely 4 points q such
that 2p = 2q. All that really shows is that the degree is at least 4.

2.1. Proposition. — For each n > 0, the “multiplication by n” map has positive degree. In other
words, there are only a finite number of n torsion points.

Proof. We prove the result by induction; it is true for n = 1 and n = 2.

If n is odd, then assume otherwise that nq = 0 for all closed points q. Let r be a non-
trivial 2-torsion point, so 2r = 0. But nr = 0 as well, so r = (n−2[n/2])r = 0, contradicting
r 6= 0.

If n is even, then [×n] = [×2]◦ [×(n/2)], and by our inductive hypothesis both [×2] and
[×(n/2)] have positive degree. �

In particular, the total number of torsion points on E is countable, so if k is an uncount-
able field, then E has an uncountable number of closed points (consider an open subset
of the curve as y2 = x3 + ax + b; there are uncountably many choices for x, and each of
them has 1 or 2 choices for y).

Thus almost all points on E are non-torsion. I’ll use this to show you some pathologies.
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An example of an affine open set that is not distinguished. I can give you an affine scheme X

and an affine open subset Y that is not distinguished in X. Let X = E − p, which is affine
(easy, or see Exercise ).

Let q be another point on E so that q−p is non-torsion. Then E−p−q is affine (Exercise ).
Assume that it is distinguished. Then there is a function f on E − p that vanishes on q (to
some positive order d). Thus f is a rational function on E that vanishes at q to order d,
and (as the total number of zeros minus poles of f is 0) has a pole at p of order d. But then
d(p − q) = 0 in Pic0 E, contradicting our assumption that p − q is non-torsion.

An Example of a scheme that is locally factorial at a point p, but such that no affine open
neighborhood of p has ring that is a Unique Factorization Domain.

Consider p ∈ E. Then an open neighborhood of E is of the form E − q1 − · · · − qn. I
claim that its Picard group is nontrivial. Recall the exact sequence:

Zn
(a1,...,an)7→a1q1+···+anqn

// Pic E // Pic(E − q1 − · · · − qn) // 0 .

But the group on the left is countable, and the group in the middle is uncountable, so the
group on the right is non-zero.

Example of variety with non-finitely-generated space of global sections.

This is related to Hilbert’s fourteenth problem, although I won’t say how.

Before we begin we have a preliminary exercise.

Exercise. Suppose X is a scheme, and L is the total space of a line bundle corresponding
to invertible sheaf L, so L = Spec⊕n≥0(L

∨)⊗n. Show that H0(L,OL) = ⊕H0(X, (L∨)⊗n).

Let E be an elliptic curve over some ground field k, N a degree 0 non-torsion invertible
sheaf on E, and P a positive-degree invertible sheaf on E. Then H0(E, Nm ⊗Pn) is nonzero
if and only if either (i) n > 0, or (ii) m = n = 0 (in which case the sections are elements of
k). Thus the ring R = ⊕m,n≥0H

0(E, Nm ⊗ Pn) is not finitely generated.

Now let X be the total space of the vector bundle N ⊕ P over E. Then the ring of global
sections of X is R.

3. MORE SERIOUS STUFF

I’ll conclude the quarter by showing the following.

• If C has genus g, then “Pic0(C) has dimension g”.
• “The moduli space of curves of genus g “is dimension 3g − 3.”

We’ll work over an algebraically closed field k. We haven’t yet made the above notions
precise, so what follows are just plausibility arguments. (It is worth trying to think of a
way of making these notions precise! There are several ways of doing this usefully.)
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3.1. The Picard group has dimension g: “dim Pic0 C = g”. There are quotes around this
equation because so far, Pic0 C is simply a set, so this will just be a plausibility argument.
Let p be any (closed, necessarily degree 1) point of C. Then twisting by p gives an iso-
morphism of Picd C and Picd+1 C, via L ↔ L(p). Thus we’ll consider Picd C, where d � 0

(in fact d > degK = 2g − 2 will suffice). Say dim Picd C = h. We ask: how many degree d

effective divisors are there (i.e. what is the dimension of this family)? The answer is clearly
d, and Cd surjects onto this set (and is usually d!-to-1).

But we can count effective divisors in a different way. There is an h-dimensional family
of line bundles by hypothesis, and each one of these has a (d − g + 1)-dimensional family
of non-zero sections, each of which gives a divisor of zeros. But two sections yield the
same divisor if one is a multiple of the other. Hence we get: h+(d−g+1)−1 = h+d−g.

Thus d = h + d − g, from which h = g as desired.

Note that we get a bit more: if we believe that Picd has an algebraic structure, we have
a fibration (Cd)/Sd → Picd, where the fibers are isomorphic to Pd−g. In particular, Picd is
reduced, and irreducible.

3.2. The moduli space of genus g curves has dimension 3g − 3. Let Mg be the set
of nonsingular genus g curves, and pretend that we can give it a variety structure. Say
Mg has dimension p. By our useful Riemann-Roch facts, if d � 0, and D is a divisor of
degree d, then h0(C,O(D)) = d − g + 1. If we take two general sections s, t of the line
bundle O(D), we get a map to P1, and this map is degree d. Conversely, any degree d

cover f : C → P1 arises from two linearly independent sections of a degree d line bundle.
Recall that (s, t) gives the same map to P1 as (s ′, t ′) if and only (s, t) is a scalar multiple
of (s ′, t ′). Hence the number of maps to P

1 arising from a fixed curve C and a fixed line
bundle L correspond to the choices of two sections (2(d − g + 1)), minus 1 to forget the
scalar multiple, for a total of 2d − 2g + 1. If we let the the line bundle vary, the number of
maps from a fixed curve is 2d − 2g + 1 + dim Picd(C) = 2d − g + 1. If we let the curve also
vary, we see that the number of degree d genus g covers of P1 is p + 2d − g + 1 .

But we can also count this number using the Riemann-Hurwitz formula. I’ll need one
believable fact: there are a finite number of degree d covers with a given set of branch
points. (In the complex case, this is believable for the following reason. If C → P1 is
a branched cover of P1, branched over p1, . . . , pr, then by discarding the branch points
and their preimages, we have an unbranched cover C ′

→ P1 − {p1, . . . , pr}. Then you
can check that (i) the original map C → P1 is determined by this map (because C is
the normalization of P

1 in this function field extension FF(C ′)/FF(P1)), and (ii) there are
a finite number of such covers (corresponding to the monodromy data around these r

points; we have r elements of Sd once we take branch cuts). This last step is where the
characteristic 0 hypothesis is necessary.)

By the Riemann-Hurwitz formula, for a fixed g and d, the total amount of branching
is 2g + 2d − 2 (including multiplicity). Thus if the branching happens at no more than
2g + 2d − 2 points, and if we have the simplest possible branching at 2g + 2d − 2 points,
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the covering curve is genus g. Thus
p + 2d − g + 1 = 2g + 2d − 2,

from which p = 3g − 3 .

Thus there is a 3g−3-dimensional family of genus g curves! (By showing that the space
of branched covers is reduced and irreducible, we could again “show” that the moduli
space is reduced and irreducible.)

E-mail address: vakil@math.stanford.edu
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