MODERN ALGEBRA (MATH 210) PROBLEM SET 8

- **1.** Describe the set of integers of the form $a^2 ab + b^2$ ($a, b \in \mathbb{Z}$). (You may use the results of last week's problem set.)
- **2.** Suppose r + si $(r, s \in \mathbb{Q})$ is the zero of a monic polynomial in $\mathbb{Z}[x]$. Show that $r, s \in \mathbb{Z}$.
- **3.** Suppose p is an odd prime.
 - (a) Show that exactly half of $(\mathbb{Z}/p\mathbb{Z})^* = \{1, 2, ..., p-1\}$ are square modulo p.
 - (b) Prove that $a^{(p-1)/2} \equiv \pm 1 \pmod{p}$ for all $a \in (\mathbb{Z}/p\mathbb{Z})^*$.
 - (c) Show that $a^{(p-1)/2} \equiv 1 \pmod{p}$ if and only if a is a perfect square modulo p.
 - (d) Show that if neither a nor b are perfect squares modulo p, then ab is a perfect square modulo p.
- **4.** Show that $\mathbb{Q}(\pi) \cong \mathbb{Q}(e)$. (You may use the fact that π and e are transcendental over \mathbb{Q} .)
- **5.** Suppose that K is a field of characteristic 0, and $f(x) \in K[x]$ is irreducible. Show that f does not have repeated roots. Show that this is false in characteristic p. (*Hint:* consider $K = \mathbb{F}_p(t)$, $f(x) = x^p t$.)
- **6.** Suppose $f(x) \in \mathbb{Z}[x]$ is a degree n polynomial. Let E be its splitting field. Show that the group of automorphisms of E fixing \mathbb{Q} is isomorphic to a subgroup of S_n . (Hint: How does it act on the roots of f(x)? Don't ignore the tedious special case where f(x) has multiple roots.) This is called the *Galois group* of the polynomial.
- 7. (a) Show that if $f(x) = x^3 2$, then the Galois group is isomorphic to S_3 .
- (b) Show that the splitting field E of $x^3 3x + 1$ has degree 3 over \mathbb{Q} . Show that Galois group of \mathbb{E}/\mathbb{Q} is isomorphic to $\mathbb{Z}/3$.
- **8.** Find a minimal polynomial (over \mathbb{Q}) of $\sqrt{2} + \sqrt{3}$. (In other words, find a polynomial of minimal degree over \mathbb{Q} with $\sqrt{2} + \sqrt{3}$ as a root.) Let E be the splitting field of this polynomial. Show that $E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Find the Galois group of E over \mathbb{Q} .

This set is due Friday, Dec. 3 at noon at Jarod Alper's door, 380-J.