## MODERN ALGEBRA (MATH 210) PROBLEM SET 5

- **1.** Suppose G is a finite group. Let S be the subset of G consisting of all elements whose order is a power of p. If S is a subgroup, show that S is a p-Sylow subgroup, and that it is normal. Conversely, show that if there is a single p-Sylow subgroup, then it is S.
- **2.** Show that the group of rotations of a tetrahedron is isomorphic to  $A_4$ .
- **3.** Let  $\phi(n)$  be the number of integers smaller than n that are relatively prime to n. If p is a prime, and m is positive integer, show that  $m \mid \phi(p^m 1)$ .
- **4.** Suppose G is the quotient product of n finite cyclic groups by some subgroup. Show that G can be written as the product of m cyclic groups, where  $m \le n$ .
- **5.** Show that  $(\mathbb{Z}/2^n)^*$  is not cyclic for  $n \ge 3$ . (One possible hint: show the result for n = 3 and work by induction. A hint for a different proof: find 2 distinct subgroups of order 2.)
- **6.** Show that  $(\mathbb{Z}/3^n)^*$  *is* cyclic for all positive integers n.
- 7. Let P be a 2-Sylow subgroup of S<sub>8</sub>. Show that P can be written as a semidirect product  $D_8 \times D_8 \times \mathbb{Z}/2$ . Show that P can be written as a semidirect product  $(\mathbb{Z}/2)^4 \times D_8$ .
- **8.** Let F be the free group on two generators x and y (whose elements can be written as words with two letters x and y). Let  $\phi: F \to D_{2n}$  (where  $D_{2n}$  is written interpreted as the symmetries of a regular n-gone), where x maps to a rotation by  $2\pi/n$  and y maps to a reflection. Show that the kernel of  $\pi$  is generated by  $x^n$ ,  $y^2$ , xyxy. (Hence  $D_{2n}$  has a presentation  $\langle x,y:x^n=y^2=xyxy=e\rangle$ . Hint: remember the related problem about  $S_6$ .)

This set is due Friday, Nov. 12 at noon at Jarod Alper's door, 380-J.

Date: Wednesday, November 3, 2004.