
SOLUTION SKETCHES TO 18.034 PRACTICE
PROBLEMS

Problem 1. Consider the differential equation

M(x, y) +N(x, y)y′ = 0,(1)

where M , N , My, Nx are continuous on the entire plane.

(a) What does it mean for equation (1) to be exact? What does this tell you
about solutions to the the differential equation?

(b) What is the condition required on M and N such that equation (1) is exact?

(c) If equation (1) is not exact, then it may be made so by multiplying by an
integrating factor µ(x) (a function only of x). Show that this integrating factor will
make (1) exact if

dµ

dx
=
My −Nx

N
µ.

Hence this method will only work if My−Nx
N is a function of x only.

(d) Apply this technique to show that any solution to the differential equation
(3xy + y2) + (x2 + xy)y′ = 0 lies on a curve of the form x3y + x2y2/2 = constant.

Solution. (b) The condition is My = Nx, see Theorem 2.8.1 on p. 84. (c) See p.
87 of the text. (d) In this case, My−Nx

N = 1/x, so we want to solve dµ/dx = µ/x.
µ = x works, from which we get x3y + 1

2x
2y2 = c.

Problem 2. Consider the differential equation

t2y′′ − (t+ 2)ty′ + (t+ 2)y = 0.

Notice that y1 = t is a solution. Find all solutions on the interval t > 0. Hint:
Suppose you had another solution y2. Find the Wronskian, using Abel’s theorem,
and from this construct a differential equation satisfied by y2.

Solution. Rewrite the equation as

y′′ + (−2/t− 1)y′ + (2/t2 + 1/t)y = 0.

By the existence and uniqueness theorem, there is a two-dimensional family of
solutions on this range. y1 = t is one solution, so we seek another solution linearly
independent from this one. If y2 is another solution, the then Wronskian W (y1, y2)
is some multiple of t2et. We will find a y2 where W (y1, y2) = t2et, i.e.

ty′2 − y2 = t2et.
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Use an integrating factor of 1/t, and integrate to get y2/t = et +C. Thus y2 = tet

is another solution. (Check that it works!) Thus all solutions are of the form
At+Btet.

Problem 3. Consider the differential equation

xy′′ + 2y′ + xy = 0.

(a) Which values of x are ordinary points? Regular singular points? (Hint:
there is one; call it x0.) Irregular singular points (i.e. neither ordinary nor regular
singular)?

(b) Solve the indicial equation at the regular singular point x0 to get the expo-
nents of the singularity r1, r2.

(c) Find two linearly independent solutions of the form

(x− x0)ri
∞∑
n=0

anx
n.

(d)* Show that if y(−π) 6= 0, then as t approaches 0 from the left (i.e. from
the negative side), y(t) becomes (either positively or negatively) infinite. (Hint:
Express the solutions from (c) in terms of elementary functions.)

Solution. (a) x is regular unless x = 0, in which case it is regular singular.

(b) The indicial equation is r(r − 1) + 2r = 0, so r = −1 or 0.

(c) One solution corresponding to r = −1 (there is some choice involved) is

y = 1/x− x/2! + x3/4!− x5/6! . . .

and the solution corresponding to r = 0 is

y = 1− x2/3! + x4/5! . . . .

(d) The solutions are sin(x)/x and cos(x)/x. A solution for x < 0 is of the
form (A sin(x) +B cos(x))/x. Note that sin(x)/x doesn’t blow up near x = 0. The
condition given shows that B 6= 0, so the solution blows up.

Problem 4. Consider the differential equation coming from a door with friction

y′′ + γy′ + y = 0.

Here γ corresponds to the friction; assume it is small but positive. Show that as γ
increases, the period of oscillation increases.

Solution. The frequency of the oscillation is the imaginary part of the roots of
r2 +γr+1 = 0, which turns out to be (1−(γ/2)2)1/2. As γ increases, the frequency
decreases, so the period increases. (See Feb. 28 class.)
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Problem 5. Show that t3 and t4 can’t both be solutions to a differential equation
of the form y′′ + qy′ + ry = 0 where q and r are continuous functions defined on
the real numbers. Can t3 and t4 be solutions to a differential equation of the form
py′′ + qy′ + ry = 0 where p, q and r are continuous functions defined on the real
numbers?

Solution. Their Wronskian vanishes at 0, so they can’t be a solution to a differ-
ential equation of the form y′′+qy′+ry = 0 where q and r are continuous functions
defined on the real numbers. However, they are solutions to the differential equation
t2y′′ − 6ty′ + 12y = 0.

Problem 6. Solve the system of equations

x′ = 4x+ y,

y′ = −x+ 2y.

Sketch the phase portrait.

Solution. The eigenvalues are 3 and 3; the system is incomplete, and has only
one eigenvector (1,−1).

The solution is
e3t (c1(t, 1− t) + c2(1,−1)) .

Problem 7. Consider the system of differential equations

x′ = −x− y,

y′ = x− y.

(a)What are the eigenvectors and eigenvalues?

(b) Sketch the phase portrait.

(c) Find a fundamental matrix Ψ(t) for the system. If

A =
(
−1 −1
1 −1

)

(d) Show that e2πA =
(
e−2π 0

0 e−2π

)
, where eAt is defined to be Ψ(t)Ψ(0)−1.

Solution. (a) λ1 = −1 + i, λ2 = −1− i, v1 = (i, 1), v2 = (−i, 1).

(b) Spiraling in counterclockwise.

(c) One possibility is (
ie(−1+i)t −ie(−1−i)t

e(−1+i)t e(−1−i)t

)
.
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Problem 8. (a) Find the coefficient of xn in the power series expansion of
(1 + x)r, where r is a real number.

(b) Show that eaxebx = e(a+b)x by explicitly multiplying out the power series
expansions of both sides.

(c) Show that 2 sin(x) cos(x) = sin(2x) by explicitly multiplying out the power
series expansions of both sides.

Solution. (a) The coefficient of xn is 1/n! times the nth derivative of (1+x)r —
which is r(r − 1) · · · (r − n + 1)(1 + x)r−n — evaluated at 0. Hence the answer is
r(r − 1) . . . (r − n+ 1)/n!. (b)

eax =
∞∑
i=0

aixi/i!

ebx =
∞∑
j=0

bjxj/j!

so

eaxebx =
∞∑
k=0

∑
i+j=k

aibjxk/(i!j!).

On the other hand,

e(a+b)x =
∞∑
k=0

(a+ b)kxk/k!.

So these two are the same if their coefficient of xk is the same, or equivalently if

(a+ b)k =
∑
i+j=k

k!
i!j!

aibj .

But this is just the binomial theorem.

(c) Similar to (b).

Problem 9. consider the differential equation

(x− 1)2y′′ − (x− 1)y′ + 2y = 0.(2)

(a) What is a regular singular point? Show that 1 is a regular singular point of
equation (2).

(b) Find all solutions away from x = 1.

(c) Sketch a non-zero solution of equation (2) near x = 1.

(d) Why do solutions of (x− 1)2y′′− (x− 1)y′+(2+ (x− 1)4)y = 0 have similar
behavior?

Solution.
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(a) See Section 5.4.

(b) This is an Euler equation. We solve r(r − 1) − r + 2 = 0, i.e. r2 − 2r +
2 = 0, which has solutions 1 + i and 1 − i. Hence solutions are of the form y =
|x|(c1 cos(ln |x|) + c2 sin(ln |x|)).

(c) The solution oscillates more greater and greater frequency and and greater
and greater amplitude.

(d) See Sections 5.6–5.7.

Problem 10. (a) By the method of variation of parameters show that the
solution of the initial value problem

y′′ + 2y′ + 2y = f(t),

y(0) = 0, y′(0) = 0 is

y =
∫ t

0

e−(t−τ)f(τ) sin(t− τ)dτ.

(b) Show that if f(t) = δ(t− τ), then the solution of part (a) reduces to

y = uπ(t)e−(t−π) sin(t− π).

Sketch this solution.

(c) Use the Laplace transform to solve the given initial value problem with f(t) =
δ(t− π) and confirm that the solution agrees with the result of part (b).

Solution. See 6.5 Problem 21.
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