SOLUTION SKETCHES TO 18.034 PRACTICE PROBLEMS

Problem 1. Consider the differential equation

(1)
$$M(x,y) + N(x,y)y' = 0,$$

where M, N, M_y, N_x are continuous on the entire plane.

- (a) What does it mean for equation (1) to be exact? What does this tell you about solutions to the differential equation?
 - (b) What is the condition required on M and N such that equation (1) is exact?
- (c) If equation (1) is not exact, then it may be made so by multiplying by an integrating factor $\mu(x)$ (a function only of x). Show that this integrating factor will make (1) exact if

$$\frac{d\mu}{dx} = \frac{M_y - N_x}{N}\mu.$$

Hence this method will only work if $\frac{M_y - N_x}{N}$ is a function of x only.

- (d) Apply this technique to show that any solution to the differential equation $(3xy + y^2) + (x^2 + xy)y' = 0$ lies on a curve of the form $x^3y + x^2y^2/2 = \text{constant}$.
- Solution. (b) The condition is $M_y=N_x$, see Theorem 2.8.1 on p. 84. (c) See p. 87 of the text. (d) In this case, $\frac{M_y-N_x}{N}=1/x$, so we want to solve $d\mu/dx=\mu/x$. $\mu=x$ works, from which we get $x^3y+\frac{1}{2}x^2y^2=c$.

Problem 2. Consider the differential equation

$$t^2y'' - (t+2)ty' + (t+2)y = 0.$$

Notice that $y_1 = t$ is a solution. Find all solutions on the interval t > 0. Hint: Suppose you had another solution y_2 . Find the Wronskian, using Abel's theorem, and from this construct a differential equation satisfied by y_2 .

Solution. Rewrite the equation as

$$y'' + (-2/t - 1)y' + (2/t^2 + 1/t)y = 0.$$

By the existence and uniqueness theorem, there is a two-dimensional family of solutions on this range. $y_1 = t$ is one solution, so we seek another solution linearly independent from this one. If y_2 is another solution, the then Wronskian $W(y_1, y_2)$ is some multiple of t^2e^t . We will find a y_2 where $W(y_1, y_2) = t^2e^t$, i.e.

$$ty_2' - y_2 = t^2 e^t.$$

Date: May 12, 2000.

Use an integrating factor of 1/t, and integrate to get $y_2/t = e^t + C$. Thus $y_2 = te^t$ is another solution. (Check that it works!) Thus all solutions are of the form $At + Bte^t$.

Problem 3. Consider the differential equation

$$xy'' + 2y' + xy = 0.$$

- (a) Which values of x are ordinary points? Regular singular points? (Hint: there is one; call it x_0 .) Irregular singular points (i.e. neither ordinary nor regular singular)?
- (b) Solve the *indicial equation* at the regular singular point x_0 to get the *exponents of the singularity* r_1 , r_2 .
 - (c) Find two linearly independent solutions of the form

$$(x-x_0)^{r_i}\sum_{n=0}^{\infty}a_nx^n.$$

(d)* Show that if $y(-\pi) \neq 0$, then as t approaches 0 from the left (i.e. from the negative side), y(t) becomes (either positively or negatively) infinite. (Hint: Express the solutions from (c) in terms of elementary functions.)

Solution. (a) x is regular unless x = 0, in which case it is regular singular.

- (b) The indicial equation is r(r-1) + 2r = 0, so r = -1 or 0.
- (c) One solution corresponding to r = -1 (there is some choice involved) is

$$y = 1/x - x/2! + x^3/4! - x^5/6! \dots$$

and the solution corresponding to r = 0 is

$$y = 1 - x^2/3! + x^4/5! \dots$$

(d) The solutions are $\sin(x)/x$ and $\cos(x)/x$. A solution for x < 0 is of the form $(A\sin(x) + B\cos(x))/x$. Note that $\sin(x)/x$ doesn't blow up near x = 0. The condition given shows that $B \neq 0$, so the solution blows up.

Problem 4. Consider the differential equation coming from a door with friction

$$y'' + \gamma y' + y = 0.$$

Here γ corresponds to the friction; assume it is small but positive. Show that as γ increases, the period of oscillation increases.

Solution. The frequency of the oscillation is the imaginary part of the roots of $r^2 + \gamma r + 1 = 0$, which turns out to be $(1 - (\gamma/2)^2)^{1/2}$. As γ increases, the frequency decreases, so the period increases. (See Feb. 28 class.)

Problem 5. Show that t^3 and t^4 can't both be solutions to a differential equation of the form y'' + qy' + ry = 0 where q and r are continuous functions defined on the real numbers. Can t^3 and t^4 be solutions to a differential equation of the form py'' + qy' + ry = 0 where p, q and r are continuous functions defined on the real numbers?

Solution. Their Wronskian vanishes at 0, so they can't be a solution to a differential equation of the form y'' + qy' + ry = 0 where q and r are continuous functions defined on the real numbers. However, they are solutions to the differential equation $t^2y'' - 6ty' + 12y = 0$.

Problem 6. Solve the system of equations

$$x' = 4x + y,$$

$$y' = -x + 2y.$$

Sketch the phase portrait.

Solution. The eigenvalues are 3 and 3; the system is incomplete, and has only one eigenvector (1, -1).

The solution is

$$e^{3t} (c_1(t, 1-t) + c_2(1, -1)).$$

Problem 7. Consider the system of differential equations

$$x' = -x - y,$$

$$y' = x - y$$
.

- (a) What are the eigenvectors and eigenvalues?
- (b) Sketch the phase portrait.
- (c) Find a fundamental matrix $\Psi(t)$ for the system. If

$$A = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$$

(d) Show that $e^{2\pi A}=\begin{pmatrix} e^{-2\pi} & 0 \\ 0 & e^{-2\pi} \end{pmatrix}$, where e^{At} is defined to be $\Psi(t)\Psi(0)^{-1}$.

Solution. (a)
$$\lambda_1 = -1 + i$$
, $\lambda_2 = -1 - i$, $v_1 = (i, 1)$, $v_2 = (-i, 1)$.

- (b) Spiraling in counterclockwise.
- (c) One possibility is

$$\begin{pmatrix} ie^{(-1+i)t} & -ie^{(-1-i)t} \\ e^{(-1+i)t} & e^{(-1-i)t} \end{pmatrix}.$$

Problem 8. (a) Find the coefficient of x^n in the power series expansion of $(1+x)^r$, where r is a real number.

- (b) Show that $e^{ax}e^{bx}=e^{(a+b)x}$ by explicitly multiplying out the power series expansions of both sides.
- (c) Show that $2\sin(x)\cos(x) = \sin(2x)$ by explicitly multiplying out the power series expansions of both sides.

Solution. (a) The coefficient of x^n is 1/n! times the *n*th derivative of $(1+x)^r$ — which is $r(r-1)\cdots(r-n+1)(1+x)^{r-n}$ — evaluated at 0. Hence the answer is $r(r-1)\ldots(r-n+1)/n!$. (b)

$$e^{ax} = \sum_{i=0}^{\infty} a^i x^i / i!$$

$$e^{bx} = \sum_{j=0}^{\infty} b^j x^j / j!$$

SO

$$e^{ax}e^{bx} = \sum_{k=0}^{\infty} \sum_{i+j=k} a^i b^j x^k / (i!j!).$$

On the other hand,

$$e^{(a+b)x} = \sum_{k=0}^{\infty} (a+b)^k x^k / k!.$$

So these two are the same if their coefficient of x^k is the same, or equivalently if

$$(a+b)^k = \sum_{i+j=k} \frac{k!}{i!j!} a^i b^j.$$

But this is just the binomial theorem.

(c) Similar to (b).

Problem 9. consider the differential equation

(2)
$$(x-1)^2y'' - (x-1)y' + 2y = 0.$$

- (a) What is a regular singular point? Show that 1 is a regular singular point of equation (2).
 - (b) Find all solutions away from x = 1.
 - (c) Sketch a non-zero solution of equation (2) near x = 1.
- (d) Why do solutions of $(x-1)^2y'' (x-1)y' + (2+(x-1)^4)y = 0$ have similar behavior?

Solution.

- (a) See Section 5.4.
- (b) This is an Euler equation. We solve r(r-1) r + 2 = 0, i.e. $r^2 2r + 2 = 0$, which has solutions 1 + i and 1 i. Hence solutions are of the form $y = |x|(c_1 \cos(\ln|x|) + c_2 \sin(\ln|x|))$.
- (c) The solution oscillates more greater and greater frequency and and greater and greater amplitude.
 - (d) See Sections 5.6–5.7.

Problem 10. (a) By the method of variation of parameters show that the solution of the initial value problem

$$y'' + 2y' + 2y = f(t),$$

y(0) = 0, y'(0) = 0 is

$$y = \int_0^t e^{-(t-\tau)} f(\tau) \sin(t-\tau) d\tau.$$

(b) Show that if $f(t) = \delta(t-\tau)$, then the solution of part (a) reduces to $y = u_{\pi}(t)e^{-(t-\pi)}\sin(t-\pi).$

Sketch this solution.

(c) Use the Laplace transform to solve the given initial value problem with $f(t) = \delta(t - \pi)$ and confirm that the solution agrees with the result of part (b).

Solution. See 6.5 Problem 21.