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Three Problems for Mathematics: 
Consistency, the Continuum, and Categories

Lecture 1: Bernays, Gödel and Hilbert’s 
consistency  program.  (Tues., Sept. 11, 17:00 h)

Lecture 2: Is the Continuum Hypothesis a definite 
mathematical problem? (Wed., Sept. 12, 14:15 h)

Lecture 3: Foundations of unlimited category 
theory. (Wed., Sept. 12, 16:30)

All in Auditorium C14.  



David Hilbert,         
Paul Bernays, 

and Kurt Gödel

The cast of characters



Why are these 
Problems for Mathematics?

• What are the grounds for what it is 
legitimate to say and do in mathematics? 

• They border on philosophical problems.

• They may be treated mathematically to 
some extent, but are not problems of 
mathematics.



Some Philosophies of Mathematics

• Platonism

• Logicism

• Constructivism

• Finitism

• Formalism



David Hilbert, 
The Foremost Mathematician

of his Time

• 1862-1943

• Königsberg, Göttingen

• After Henri Poincaré, the foremost 
mathematician of the late19th and           
first third of the 20th century.

• Made fundamental contributions to          
all the major fields of pure and applied 
mathematics.



David Hilbert

1862-1943
Photo: 1932



Hilbert’s Philosophy of Mathematics

• Axiomatic Foundations:                             
All mathematical concepts are to be 
grounded axiomatically.  

• A mathematical concept exists if its 
axioms are complete and consistent.  

• This is not Formalism.  



The Leading Foundational 
Axiom Systems

• Logic (Frege, Russell, Hilbert)

• Arithmetic (Peano)

• Analysis (Hilbert and Bernays)

• Set Theory (Zermelo, Fraenkel, Bernays)

• All have an “intended interpretation”.



Hilbert’s Finitist Consistency Program
(1922-1934)

• Foundational axiom systems involving      
the completed infinite are problematic    
and must be proved consistent             
(analysis, set theory)

• Even arithmetic with Law of Excluded 
Middle (LEM) involves it:

• (for all n) P(n) or (there exists n) not-P(n).



Hilbert’s Finitist Consistency Program
(continued)

• Every statement and proof in a formal 
axiomatic system consists of a finite 
sequence of symbols.  

• Finitism: only reasoning about finite 
sequences of symbols admitted.  

• Existential statements are to be witnessed. 

• There is to be no use of LEM applied to 
universal statements.



Hilbert’s Finitist Consistency Program
(concluded)

• All consistency proofs are to be finitistic.

• Beweistheorie (Proof Theory, 
Metamathematics): the theoretical 
development of finitistic consistency 
proofs.  

• Hilbert and Bernays, Grundlagen der 
Mathematik, Vol. I (1934), Vol. II (1939).



Hilbert’s Shadow over Gödel

• Hilbert raised four major problems for 
logic and set theory (HP 1-4).

• Gödel solved all of them in full or in 
significant part.

• But Hilbert never acknowledged their 
solution or congratulated Gödel!



 The Completeness of Logic Problem
(HP-1)

• First-order logic (FOL):  The logic of 
statements built from basic predicates and 
relations using “not”, “and”, “or”, “implies”, 
“for all x”, “there exists x”(where x ranges 
over an arbitrary universe of discourse).

• Hilbert’s axiomatization 
(Lectures1917-1918, with Bernays’ 
assistance).   



Kurt Gödel
1906-1978



Kurt Gödel

• b. Brünn, Moravia (now Brno), 1906

• Studied at the University of Vienna

• Attended meetings of the Vienna Circle

• Studied logic with Rudolf Carnap

• PhD 1929 with Hans Hahn



The Completeness of Logic Problem 
(HP-1, continued)

• Hilbert and Ackermann logic text, 1928:     
Is Hilbert’s axiomatization of FOL 
complete?

• i.e., does a sentence A follow from   
Hilbert’s axioms just in case it is valid in 
every domain of discourse? 



The Completeness of Logic Problem 
(HP-1, continued)

• Theorem (Gödel PhD dissertation 1929). 
Hilbert’s axiom system for FOL is 
complete.

• Bernays congratulated Gödel on this result 
in his first letter to him (1930).  The 
beginning of an extensive correspondence.

• But Hilbert never acknowledged it.  Why?



The Completeness of Arithmetic Problem
(HP-2)

• Peano Axioms (PA) for the “higher 
arithmetic”

• Formulated in FOL. Intended universe of 
discourse: N = {0, 1, 2, ..., n, ...}

• Basic axioms for 0, successor, + and ×

• The Induction Axiom



The Completeness of Arithmetic Problem
(HP-2, cont’d)

• Hilbert, Bologna (1928): Prove that PA is 
formally complete,

• i.e., show that each sentence A or its 
negation not-A is provable from PA.  

• Theorem (Gödel1930).  The extension of 
PA by the theory of types (PM) is not 
complete if it is (omega-)consistent. 



Gödel’s First Incompleteness Theorem
(HP-2, cont’d)

• Theorem (Gödel 1930-1931) If T is any 
formal axiomatic system extending PA and 
T is (omega-)consistent then T is 
incomplete. 

• In fact, there are sentences A of arithmetic 
such that neither A nor not-A is provable  
in T.  

• Bernays corresponded with Gödel about 
this but Hilbert never said a word.  Why?



Paul Bernays
Between Hilbert and Gödel

• Worked with Hilbert on his logic 
lectures, and the formulation and 
exposition of his consistency program

• Fully responsible for the preparation of 
Grundlagen der Mathematik, I and II.

• Wrote Gödel in 1931 to understand his 
incompleteness theorems. 



Paul Bernays

1888-1977



Paul Bernays

• b. London (1888), moved to Paris, Berlin

• PhD, Göttingen, 1912, under Landau in 
number theory

• Habilitationschrift in Zurich next year

• Hilbert’s assistant in Göttingen 1917-1934



Hilbert’s Program for Arithmetic
(HP-3)

• (HP-3) Give a finitistic proof of the 
consistency of PA.  

• Claimed to have been done by Ackermann, 
but then proof found to be faulty.



Gödel’s 2nd Incompleteness Theorem
and HP-3

• Theorem (Gödel 1930-1931). If T is a 
consistent extension of PA then the 
consistency of T cannot be proved in T.  

• (Proved independently by von Neumann.)

• Hence, if all finitistic methods can be 
formalized in T then Hilbert’s finitist 
consistency program can’t be carried out 
for T.



Gödel’s Theorem and (HP-3)

• Can all finitistic proofs be formalized in PA?

• Von Neumann--YES; Gödel, at first 
cautious, but within two years--YES. 

• If so, (HP-3) is answered in the negative.  



Hilbert’s Reaction to Gödel’s 
Second Incompleteness Theorem

• “Angry” (Bernays report)

• Incomprehension (?)

• Investment in his program

• Embarrassment 



Hilbert’s Reaction (cont’d)

• ...the end goal [is] to establish as consistent all our 
usual methods of mathematics.  With respect to 
this goal, I would like to emphasize the following: 
the view, which temporarily arose and which 
maintained that certain recent results of Gödel 
show that my proof theory can’t be carried out, 
has been shown to be erroneous. 

• In fact that result shows only that one must utilize 
the finitary standpoint in a sharper way for the 
farther reaching consistency proofs… (Hilbert, 
Einführung to [Hilbert and Bernays 1934])



What are the Limits of Finitism?

• Hilbert and Bernays vague on finitism

• Gödel lectures and seminar reports, 1933, 
1937: bounded by Primitive Recursive 
Arithmetic (PRA)--much weaker than PA.

• Hilbert: goes beyond PRA, but how far?

• The current consensus: Finitism is certainly 
contained in PA. 



What are the Limits of Finitism?
(continued)

• Gödel , “Über eine bisher noch nicht 
benützte Erweiterung des finiten 
Standpunktes” Dialectica (1958)

• For Paul Bernays on his 70th birthday.

• A quantifier-free system of constructive 
functionals of strength PA. 

• Worked on sharpenings until 1972.



Gödel unspoken Battle 
with  Hilbert

• Gödel was a whole-hearted platonist and 
had no doubts about the consistency of set 
theory, let alone arithmetic or analysis. 

• But Gödel took Hilbert’s consistency 
program and its relativized forms seriously.  
Why?

• Hilbert’s life-long shadow over Gödel.  
Gaining justice through the battle over 
finitism.



What’s left?

• Hilbert, Gödel, and 

• the Continuum Problem (HP-4)

• Tomorrow!
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The End


